Search NKS | Online

1 - 3 of 3 for LegendreP
It is a special case of Hypergeometric2F1 and JacobiP and satisfies a second-order ordinary differential equation in z . … The GegenbauerC[n, 1/2, z] obtained for d = 3 are LegendreP[n, z] .
[History of] exact solutions Some notable cases where closed-form analytical results have been found in terms of standard mathematical functions include: quadratic equations (~2000 BC) ( Sqrt ); cubic, quartic equations (1530s) ( x 1/n ); 2-body problem (1687) ( Cos ); catenary (1690) ( Cosh ); brachistochrone (1696) ( Sin ); spinning top (1849; 1888; 1888) ( JacobiSN ; WeierstrassP ; hyperelliptic functions); quintic equations (1858) ( EllipticTheta ); half-plane diffraction (1896) ( FresnelC ); Mie scattering (1908) ( BesselJ , BesselY , LegendreP ); Einstein equations (Schwarzschild (1916), Reissner–Nordström (1916), Kerr (1963) solutions) (rational and trigonometric functions); quantum hydrogen atom and harmonic oscillator (1927) ( LaguerreL , HermiteH ); 2D Ising model (1944) ( Sinh , EllipticK ); various Feynman diagrams (1960s-1980s) ( PolyLog ); KdV equation (1967) ( Sech etc.); Toda lattice (1967) ( Sech ); six-vertex spin model (1967) ( Sinh integrals); Calogero–Moser model (1971) ( Hypergeometric1F1 ); Yang–Mills instantons (1975) (rational functions); hard-hexagon spin model (1979) ( EllipticTheta ); additive cellular automata (1984) ( MultiplicativeOrder ); Seiberg–Witten supersymmetric theory (1994) ( Hypergeometric2F1 ).
(Sums of squares of moments of given order in general provide rotationally invariant measures of anisotropy—equal to pair correlations weighted with LegendreP or GegenbauerC functions.)
1