Showing Text From Page | View Full page with images

Some Past Initiatives

My goals in this book are sufficiently broad and fundamental that there have inevitably been previous attempts to achieve at least some of them. But without the ideas and methods of this book there have been basic issues that have eventually ended up presenting almost insuperable barriers to every major approach that has been tried.

Artificial Intelligence. When electronic computers were first invented, it was widely believed that it would not be long before they would be capable of human-like thinking. And in the 1960s the field of artificial intelligence grew up with the goal of understanding processes of human thinking and implementing them on computers. But doing this turned out to be much more difficult than expected, and after some spin-offs, little fundamental progress was made. At some level, however, the basic problem has always been to understand how the seemingly simple components in a brain can lead to all the complexities of thinking. But now finally with the framework developed in this book one potentially has a meaningful foundation for doing this. And indeed building on both theoretical and practical ideas in the book I suspect that dramatic progress will eventually be possible in creating technological systems that are capable of human-like thinking.

Artificial Life. Ever since machines have existed, people have wondered to what extent they might be able to imitate living systems. Most active from the mid-1980s to the mid-1990s, the field of artificial life concerned itself mainly with showing that computer programs could be made to emulate various features of biological systems. But normally it was assumed that the necessary programs would have to be quite complex. What the discoveries in this book show, however, is that in fact very simple programs can be sufficient. And such programs make the fundamental mechanisms for behavior clearer—and probably come much closer to what is actually happening in real biological systems.

Catastrophe Theory. Traditional mathematical models are normally based on quantities that vary continuously. Yet in nature discrete changes are often seen. Popular in the 1970s, catastrophe theory was

From Stephen Wolfram: A New Kind of Science [citation]