Search NKS | Online

641 - 650 of 1022 for Rule
Rules [for multiway systems examples] The examples shown here (roughly in order of increasing complexity) correspond respectively to cases (a), (k), (b), (q), (p), (r), (o), (d) on page 798 .
Around 100 AD, for example, following earlier Greek thinking, Lucretius made the somewhat vague suggestion that the universe might consist of atoms assembled according to grammatical rules like letters and words in human language. … But following the work of Isaac Newton in the late 1600s it increasingly came to be believed that systems could only meaningfully be described by the mathematical equations they satisfy, and not by any explicit mechanism or rules. … (Starting in the 1800s systems based on very simple rules were nevertheless used in studies of genetics and heredity.)
And in such cases, the constraints can usually be converted into explicit evolution rules. But if the constraints relate different features of a system at one particular time, then they cannot be converted into evolution rules. In computer programs and other kinds of discrete systems, explicit evolution rules and implicit constraints usually work very differently.
1D phenomena Among the phenomena that cannot occur in one dimension are those associated with shape, winding and knotting, as well as traditional phase transitions with reversible evolution rules (see page 981 ).
Universal cellular automaton The rules for the universal cellular automaton are {{_, 3, 7, 18, _}  12, {_, 5, 7 | 8, 0, _}  12, {_, 3, 10, 18, _}  16, {_, 5, 10 | 11, 0, _}  16, {_, 5, 8, 18, _}  7, {_, 5, 14, 0 | 18, _}  12, {_, _, 8, 5, _}  7, {_, _, 14, 5, _}  12, {_, 5, 11, 18, _}  10, {_, 5, 17, 0 | 18, _}  16, {_, _, x : (11 | 17), 5, _}  x - 1, {_, 0 | 9 | 18, x : (7 | 10 | 16), 3, _}  x + 1, {_, 0 | 9 | 18, 12, 3, _}  14, {_, _, 0 | 9 | 18, 7 | 10 | 12 | 16, x : (3 | 5)}  8 - x, {_, _, _, 8 | 11 | 14 | 17, x : (3 | 5)}  8 - x, {_, 13, 4, _, x : (0 | 18)}  x, {18, _, 4, _, _}  18, {_, _, 18, _, 4}  18, {0, _,4, _, _}  0, {_, _, 0, _, 4}  0, {4, _, 0 | 18, 1, _}  3, {4, _, _, _, _}  4, {_, _, 4, _, _}  9, {_, 4, 12, _, _}  7, {_, 4, 16, _, _}  10, {x : (0 | 18), _, 6, _, _}  x, {_, 2, 6, 15, x : (0 | 18)}  x, {_, 12 | 16, 6, 7, _}  0, {_, 12 | 16, 6, 10, _}  18, {_, 9, 10, 6, _}  16, {_, 9, 7, 6, _}  12, {9, 15, 6, 7, 9}  0, {9, 15, 6, 10, 9}  18, {9, _, 6, _, _}  9, {_, 6, 7, 9, 12 | 16}  12, {_, 6, 10, 9, 12 | 16}  16, {12 | 16, 6, 7, 9, _}  12, {12 | 16, 6, 10, 9, _}  16, {6, 13, _, _, _}  9, {6, _, _, _, _}  6, {_, _, 9, 13, 3}  9, {_, 9, 13, 3, _}  15, {_, _, _, 15, 3}  3, {_, 3, 15, 0 | 18, _}  13, {_, 13, 3, _, 0 | 18}  6, {x : (0 | 18), 15, 9, _, _}  x, {_, 6, 13, _, _}  15, {_, 4, 15, _, _}  13, {_, _, _, 15, 6}  6, {_, _, 2, 6, 15}  1, {_, _, 1, 6, _}  2, {_, 1, 6, _, _}  9, {_, 3, 2, _, _}  1, {3, 2, _, _, _}  3, {_, _, 3, 2, _}  3, {_, 1, 9, 1, 6}  6, {_, _, 9, 1, 6}  4, {_, 4, 2, _, _}  1, {_, _, _, _, x : (3 | 5)}  x, {_, _, 3 | 5, _, x : (0 | 18)}  x, {_, _, x : (1 | 2 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17), _, _}  x, {_, _, 18, 7 | 10, 18}  18, {_, _, 0, 7 | 10, 0}  0, {_, _, 0 | 18, _, _}  9, {_, _, x_, _, _}  x} where the numbers correspond to the icons shown in the main text according to The block in the initial conditions for the universal cellular automaton corresponding to a cell with color a is given by Flatten[{Transpose[{Join[{4, 18(1 - a), 6}, Table[9, {2 2 r + 1 - 3}]], 10 - 3 rtab}], Table[{9, 1}, {r}], 9, 13}] where r is the range of the rule to be emulated ( r = 1 for elementary rules) and rtab is the list of outcomes for that rule (starting with the outcome for {1, 1, (1) ...} ). In general, there are 2 2 r + 1 cases in the rule to be emulated; each block in the universal cellular automaton is 2 (2 2 r + 1 + r + 1) cells wide, and each step in the rule to be emulated corresponds to (3 r + 2) 2 2 r + 1 + 3 r 2 + 7 r + 3 steps in the evolution of the universal cellular automaton.
The rule for this system involves three possible replacements.
The pictures at the top of the facing page show what happens if one uses several different underlying rules for the motion of each particle.
Rules (f) through (i), however, produce exactly half the strings of any given length, and can be considered complete and consistent.
In other systems, there is no such direct way to insert such results into the rules for the system.
Cyclic tag systems [emulating tag systems] From a tag system which depends only on its first element, with rules given as in the note below, the following constructs a cyclic tag system emulating it: TS1ToCT[{n_, subs_}] := With[{k = Length[subs]}, Join[Map[v[Last[#], k] &, subs], Table[{}, {k(n - 1)}]]] u[i_, k_] := Table[If[j  i + 1, 1, 0], {j, k}] v[list_, k_] := Flatten[Map[u[#, k] &, list]] The initial condition for the tag system can be converted using v[list, k] . The list representing the complete history of the resulting cyclic tag system can then be interpreted using Map[Map[Position[#, 1] 〚 1, 1 〛 - 1 &, Partition[#, k]] &, Take[history, {1, -1, n k}]] This construction is relevant to the proof of the universality of rule 110 starting on page 678 .
1 ... 62636465 ...