Search NKS | Online

31 - 36 of 36 for Sin
For a = 8/3 , the solution can be written without Jacobi elliptic functions, and is given by 3 Sin[Sqrt[5/6] t] 2 /(2 + 3 Cos[Sqrt[5/6] t] 2 )
In the special case a = 4 , it turns out that replacing x by Sin[ π u] 2 makes the mapping become just u  FractionalPart[2 u] , revealing simple shift map dependence on the initial digit sequence.
[History of] exact solutions Some notable cases where closed-form analytical results have been found in terms of standard mathematical functions include: quadratic equations (~2000 BC) ( Sqrt ); cubic, quartic equations (1530s) ( x 1/n ); 2-body problem (1687) ( Cos ); catenary (1690) ( Cosh ); brachistochrone (1696) ( Sin ); spinning top (1849; 1888; 1888) ( JacobiSN ; WeierstrassP ; hyperelliptic functions); quintic equations (1858) ( EllipticTheta ); half-plane diffraction (1896) ( FresnelC ); Mie scattering (1908) ( BesselJ , BesselY , LegendreP ); Einstein equations (Schwarzschild (1916), Reissner–Nordström (1916), Kerr (1963) solutions) (rational and trigonometric functions); quantum hydrogen atom and harmonic oscillator (1927) ( LaguerreL , HermiteH ); 2D Ising model (1944) ( Sinh , EllipticK ); various Feynman diagrams (1960s-1980s) ( PolyLog ); KdV equation (1967) ( Sech etc.); Toda lattice (1967) ( Sech ); six-vertex spin model (1967) ( Sinh integrals); Calogero–Moser model (1971) ( Hypergeometric1F1 ); Yang–Mills instantons (1975) (rational functions); hard-hexagon spin model (1979) ( EllipticTheta ); additive cellular automata (1984) ( MultiplicativeOrder ); Seiberg–Witten supersymmetric theory (1994) ( Hypergeometric2F1 ).
The sets of numbers that can be obtained by applying elementary functions like Exp , Log and Sin seem in various ways to be disjoint from algebraic numbers.
Thus for example if x is an integer with n digits then evaluating Sin[x] or FractionalPart[x c] requires respectively finding π or c to n -digit precision.
To make a random walk on a lattice with k directions in two dimensions, one can set up e = Table[{Cos[2 π s/k], Sin[2 π s/k]}, {s, 0, k - 1}] then use FoldList[Plus, {0, 0}, Table[e 〚 Random[Integer, {1, k}] 〛 , {t}]] It turns out that on any regular lattice, in any number of dimensions, the average behavior of a random walk is always isotropic.
1234