Search NKS | Online

31 - 40 of 41 for ReplaceList
One starts by converting the list of cell colors at each step to a polynomial FromDigits[list, x] . … In the case of rule 90 a similar analysis can be given, with the 1 + x used at each step replaced by 1/x + x .
.}] = 0 g[{1, s__}] := 1 + g[IntegerDigits[FromDigits[{s}, 2] + 1, 2]] The list of elements in the sequence up to value m is given by Flatten[Table[Table[n, {IntegerExponent[n, 2] + 1}], {n, m}]] The differences between the first 2 (2 k -1) of these elements is Nest[Replace[#, {x___}  {x, 1, x, 0}]&, {}, k] The largest n for which f[n]  m is given by 2m + 1 - DigitCount[m, 2, 1] or IntegerExponent[(2m)!… Hump m in the picture of sequence (c) shown is given by FoldList[Plus, 0, Flatten[Nest[Delete[NestList[Rest, #, Length[#] - 1], 2]&, Append[Table[1, {m}], 0], m]] - 1/2] The first 2 m elements in the sequence can also be generated in terms of reordered base 2 digit sequences by FoldList[Plus, 1, Map[Last[Last[#]]&, Sort[Table[{Length[#], Apply[Plus, #], 1 - #}& [ IntegerDigits[i, 2]], {i, 2 m }]]]] Note that the positive and negative fluctuations in sequence (f) are not completely random: although the probability for individual fluctuations in each direction seems to be the same, the probability for two positive fluctuations in a row is smaller than for two negative fluctuations in a row.
In the axioms of basic logic literal variables like a must be replaced with patterns like a_ that can stand for any expression. A rule like a_ ∧ (b_ ∨ ¬ b_)  a can then immediately be applied to part of an expression using Replace . … But in predicate logic rules can be applied only to whole expressions, always in effect using Replace[expr, rules] .
The original suggestion made by Derrick Lehmer in 1948 was to take a number n and at each step to replace it by Mod[a n, m] . … In general, linear feedback shift registers can have "taps" at any list of positions on the register, so that their evolution is given by LFSRStep[taps_List, list_] := Append[Rest[list], Mod[Apply[Plus, list 〚 taps 〛 ], 2]] (With taps specified by the positions of 1's in a vector of 0's, the inside of the Mod can be replaced by vec . list as on page 1087 .) … Such generators are directly related to linear feedback shift registers, since with a list of length q , each step is simply Append[Rest[list], Mod[list 〚 1 〛 + list 〚 q - p + 1 〛 , 2 k ]] Cryptographic generators.
During the evolution the rule can apply only to the inner part FixedPoint[Replace[#, ℯ [x_]  x] &, expr] of an expression. … For all initial conditions this depth seems at first to increase linearly, then to decrease in a nested way according to FoldList[Plus, 0, Flatten[Table[ {1, 1, Table[-1, {IntegerExponent[i, 2] + 1}]}, {i, m}]]] This quantity alternates between value 1 at position 2 j and value j at position 2 j - j + 1 .
Growth rates [in substitution systems] The total number of elements of each color that occur at each step in a neighbor-independent substitution system can be found by forming the matrix m where m 〚 i, j 〛 gives the number of elements of color j + 1 that appear in the block that replaces an element of color i + 1 . … A list that gives the number of elements of each color at step t can then be found from init .
And in 1891 Giuseppe Peano gave essentially the Peano axioms listed here (they were also given slightly less formally by Richard Dedekind in 1888)—which have been used unchanged ever since. … Axioms 3, 4 and 6 can then be replaced by a × b  b × a , a × (b × c)  (a × b) × c and ( Δ a) × ( Δ a × b)  Δ a × ( Δ b × ( Δ a)) . … It was shown by Raphael Robinson in 1950 that universality is also achieved by the Robinson axioms for reduced arithmetic (usually called Q) in which induction—which cannot be reduced to a finite set of ordinary axioms (see page 1156 )—is replaced by a single weaker axiom.
The generating function for the sequence (with 0 replaced by -1) satisfies f[z]  (1 - z) f[z 2 ] , so that f[z]  Product[1 - z 2 n , {n, 0, ∞ }] . (Z transform or generating function methods can be applied directly only for substitution systems with rules such as {1  list, 0  1 - list} .)
Here are examples of how some of the basic Mathematica constructs used in the notes in this book work: • Iteration Nest[f, x, 3] ⟶ f[f[f[x]]] NestList[f, x, 3] ⟶ {x, f[x], f[f[x]], f[f[f[x]]]} Fold[f, x, {1, 2}] ⟶ f[f[x, 1], 2] FoldList[f, x, {1, 2}] ⟶ {x, f[x, 1], f[f[x, 1], 2]} • Functional operations Function[x, x + k][a] ⟶ a + k (# + k&)[a] ⟶ a + k (r[#1] + s[#2]&)[a, b] ⟶ r[a] + s[b] Map[f, {a, b, c}] ⟶ {f[a], f[b], f[c]} Apply[f, {a, b, c}] ⟶ f[a, b, c] Select[{1, 2, 3, 4, 5}, EvenQ] ⟶ {2, 4} MapIndexed[f, {a, b, c}] ⟶ {f[a, {1}], f[b, {2}], f[c, {3}]} • List manipulation {a, b, c, d} 〚 3 〛 ⟶ c {a, b, c, d} 〚 {2, 4, 3, 2} 〛 ⟶ {b, d, c, b} Take[{a, b, c, d, e}, 2] ⟶ {a, b} Drop[{a, b, c, d, e}, -2] ⟶ {a, b, c} Rest[{a, b, c, d}] ⟶ {b, c, d} ReplacePart[{a, b, c, d}, x, 3] ⟶ {a, b, x, d} Length[{a, b, c}] ⟶ 3 Range[5] ⟶ {1, 2, 3, 4, 5} Table[f[i], {i, 4}] ⟶ {f[1], f[2], f[3], f[4]} Table[f[i, j], {i, 2}, {j, 3}] ⟶ {{f[1, 1], f[1, 2], f[1, 3]}, {f[2, 1], f[2, 2], f[2, 3]}} Array[f, {2, 2}] ⟶ {{f[1, 1], f[1, 2]}, {f[2, 1], f[2, 2]}} Flatten[{{a, b}, {c}, {d, e}}] ⟶ {a, b, c, d, e} Flatten[{{a, {b, c}}, {{d}, e}}, 1] ⟶ {a, {b, c}, {d}, e} Partition[{a, b, c, d}, 2, 1] ⟶ {{a, b}, {b, c}, {c, d}} Split[{a, a, a, b, b, a, a}] ⟶ {{a, a, a}, {b, b}, {a, a}} ListConvolve[{a, b}, {1, 2, 3, 4, 5}] ⟶ {2a + b, 3a + 2b, 4a + 3b, 5a + 4b} Position[{a, b, c, a, a}, a] ⟶ {{1}, {4}, {5}} RotateLeft[{a, b, c, d, e}, 2] ⟶ {c, d, e, a, b} Join[{a, b, c}, {d, b}] ⟶ {a, b, c, d, b} Union[{a, a, c, b, b}] ⟶ {a, b, c} • Transformation rules {a, b, c, d} /. b  p ⟶ {a, p, c, d} {f[a], f[b], f[c]} /. f[a]  p ⟶ {p, f[b], f[c]} {f[a], f[b], f[c]} /. f[x_]  p[x] ⟶ {p[a], p[b], p[c]} {f[1], f[b], f[2]} /. f[x_Integer]  p[x] ⟶ {p[1], f[b], p[2]} {f[1, 2], f[3], f[4, 5]} /. f[x_, y_]  x + y ⟶ {3, f[3], 9} {f[1], g[2], f[2], g[3]} /. f[1] | g[_]  p ⟶ {p, p, f[2], p} • Numerical functions Quotient[207, 10] ⟶ 20 Mod[207, 10] ⟶ 7 Floor[1.45] ⟶ 1 Ceiling[1.45] ⟶ 2 IntegerDigits[13, 2] ⟶ {1, 1, 0, 1} IntegerDigits[13, 2, 6] ⟶ {0, 0, 1, 1, 0, 1} DigitCount[13, 2, 1] ⟶ 3 FromDigits[{1, 1, 0, 1}, 2] ⟶ 13 The Mathematica programs in these notes are formatted in Mathematica StandardForm .
One trivial way to do so is to take a universal system but modify it so that if it ever halts its output is discarded and, say, replaced by its original input. … To set up the generalized diagonal argument one needs a way to list all possible programs.
1234