Search NKS | Online
31 - 40 of 46 for FoldList
The Thue–Morse sequence discussed on page 890 can be obtained from it by applying
1 - Mod[Flatten[Partition[FoldList[Plus, 0, list], 1, 2]], 2]
(b) The n th element is simply Mod[n, 2] .
Starting with a list of nodes, the nodes reached by following arcs with value a for one step are given by
NetStep[net_, i_, a_] := Union[ReplaceList[a, Flatten[net 〚 i 〛 ]]]
A list of values then corresponds to a path in the network starting from any node if
Fold[NetStep[net, #1, #2]&, Range[Length[net]], list] =!… = {}, AllNet[k], q = ISets[b = Map[Table[ Position[d, NetStep[net, #, a]] 〚 1, 1 〛 , {a, 0, k - 1}]&, d]]; DeleteCases[MapIndexed[#2 〚 2 〛 - 1 #1 &, Rest[ Map[Position[q, #] 〚 1, 1 〛 &, Transpose[Map[Part[#, Map[ First, q]]&, Transpose[b]]], {2}]] - 1, {2}], _ 0, {2}]]]
DSets[net_, k_:2] := FixedPoint[Union[Flatten[Map[Table[NetStep[net, #, a], {a, 0, k - 1}]&, #], 1]]&, {Range[Length[net]]}]
ISets[list_] := FixedPoint[Function[g, Flatten[Map[ Map[Last, Split[Sort[Part[Transpose[{Map[Position[g, #] 〚 1, 1 〛 &, list, {2}], Range[Length[list]]}], #]], First[#1] First[#2]&], {2}]&, g], 1]], {{1}, Range[2, Length[list]]}]
If net has q nodes, then in general MinNet[net] can have as many as 2 q -1 nodes. … To obtain such trimmed networks one can apply the function
TrimNet[net_] := With[{m = Apply[Intersection, Map[FixedPoint[ Union[#, Flatten[Map[Last, net 〚 # 〛 , {2}]]]&, #]&, Map[List, Range[Length[net]]]]]}, net 〚 m 〛 /.
Computing powers [of numbers]
The method of repeated squaring (also known as the binary power method, Russian peasant method and Pingala's method) computes the quantity m t by performing about Log[t] multiplications and building up the sequence
FoldList[#1 2 m #2 &, 1, IntegerDigits[t, 2]]
(related to the Horner form for the base 2 representation of t ). Given two numbers x and y their product can be computed in base k by ( FromDigits does the carries)
FromDigits[ListConvolve[IntegerDigits[x, k], IntegerDigits[y, k], {1, -1}, 0], k]
For numbers with n digits direct evaluation of the convolution would take about n 2 steps.
For all initial conditions this depth seems at first to increase linearly, then to decrease in a nested way according to
FoldList[Plus, 0, Flatten[Table[ {1, 1, Table[-1, {IntegerExponent[i, 2] + 1}]}, {i, m}]]]
This quantity alternates between value 1 at position 2 j and value j at position 2 j - j + 1 .
With the state of a 2-color tag system encoded as an integer according to FromDigits[Reverse[list] + 1, 3] the following takes the rule for any such tag system (in the first form from page 894 ) and yields a primitive recursive function that emulates a single step in its evolution:
TSToPR[{n_, rule_}] := Fold[Apply[c, Flatten[{#1, Array[p, #
2], c[r[z, c[r[p[1], s], c[r[z, p[2]], c[r[z, r[c[s, z], c[r[c[s,
c[s, z]], z], p[2]]]], p[2]]], p[1]]], p[#2]]}]] & , c[c[r[p[1],
s], p[1], c[r[p[1], r[z, c[s, c[s, s]]]], c[c[r[z, c[r[p[1], s],
c[r[z, c[s, z]], c[r[p[1], r[z, c[r[p[1], s], c[r[z, p[2]], c[
r[z, r[c[s, z], c[r[c[s, c[s, z]], z], p[2]]]], p[2]]], p[1]]]],
p[2], p[3]]], p[1]]], p[1], p[1]], p[1]], p[2]]], p[n + 1],
MapIndexed[c[r[z, c[r[p[1], p[4]], p[2], p[3], p[4]]], c[r[z,
r[c[s, z], c[r[c[s, c[s, z]], z], p[2]]]], p[Length[#2] + 1]], #
1 〚 1 〛 , #1 〚 2 〛 ] & , Nest[Partition[#1, 2] & , Table[Nest[c[s, #] &
z, FromDigits[Reverse[IntegerDigits[i, 2, n] /. rule] + 1, 3]],
{i, 0, 2 n - 1}], n - 1], {0, n - 1}]], Range[n, 1, -1]]
(For tag system (a) from page 94 this yields a primitive recursive function of size 325.) … Note that the same basic approach can be used to emulate Turing machines with recursive functions; the Turing machine configuration {s, list, n} can be encoded by an integer such as
2^FromDigits[Reverse[Take[list, n - 1]]] 3^FromDigits[Take[list, {n + 1, -1}]] 5^list 〚 n 〛 7 s
But if IntegerDigits[x, 2] involves no consecutive 0's then for example f[x] can be obtained from
2^(b[Join[{1, 1}, #], Length[#]] &)[IntegerDigits[x, 2]] - 1
a[{l_, _}, r_] := ({l + (5r - 3#)/2, #} &)[Mod[r, 2]]
a[{l_, 0}, 0] := {l + 1, 0}
a[{l_, 1}, 0] := ({(13 + #(5/2)^IntegerExponent[#, 2])/6, 0} &[6l + 2]
b[list_, i_] := First[Fold[a, {Apply[Plus, Drop[list, -i]], 0}, Apply[Plus, Split[Take[list, -i], #1 #2 ≠ 0 &], 1]]]
(The corresponding expression for t[x] is more complicated.) … It is certainly possible that they could increase like NestList[# 2 &, 2, n] , or 2 2 n , although for x = (20 4 s - 2)/3 a better fit for n ≤ 200 is just 2 2.6 n , with outputs increasing like 2 2 1.3 n .
Sorting networks
Any list can be sorted using Fold[PairSort, list, pairs] by doing a fixed sequence of comparisons of pairs
PairSort[a_, p : {_, _}] := Block[{t = a}, t 〚 p 〛 = Sort[t 〚 p 〛 ]; t]
(Different comparisons often do not interfere and so can be done in parallel.)
Here are examples of how some of the basic Mathematica constructs used in the notes in this book work:
• Iteration
Nest[f, x, 3] ⟶ f[f[f[x]]]
NestList[f, x, 3] ⟶ {x, f[x], f[f[x]], f[f[f[x]]]}
Fold[f, x, {1, 2}] ⟶ f[f[x, 1], 2]
FoldList[f, x, {1, 2}] ⟶ {x, f[x, 1], f[f[x, 1], 2]}
• Functional operations
Function[x, x + k][a] ⟶ a + k
(# + k&)[a] ⟶ a + k
(r[#1] + s[#2]&)[a, b] ⟶ r[a] + s[b]
Map[f, {a, b, c}] ⟶ {f[a], f[b], f[c]}
Apply[f, {a, b, c}] ⟶ f[a, b, c]
Select[{1, 2, 3, 4, 5}, EvenQ] ⟶ {2, 4}
MapIndexed[f, {a, b, c}] ⟶ {f[a, {1}], f[b, {2}], f[c, {3}]}
• List manipulation
{a, b, c, d} 〚 3 〛 ⟶ c
{a, b, c, d} 〚 {2, 4, 3, 2} 〛 ⟶ {b, d, c, b}
Take[{a, b, c, d, e}, 2] ⟶ {a, b}
Drop[{a, b, c, d, e}, -2] ⟶ {a, b, c}
Rest[{a, b, c, d}] ⟶ {b, c, d}
ReplacePart[{a, b, c, d}, x, 3] ⟶ {a, b, x, d}
Length[{a, b, c}] ⟶ 3
Range[5] ⟶ {1, 2, 3, 4, 5}
Table[f[i], {i, 4}] ⟶ {f[1], f[2], f[3], f[4]}
Table[f[i, j], {i, 2}, {j, 3}] ⟶ {{f[1, 1], f[1, 2], f[1, 3]}, {f[2, 1], f[2, 2], f[2, 3]}}
Array[f, {2, 2}] ⟶ {{f[1, 1], f[1, 2]}, {f[2, 1], f[2, 2]}}
Flatten[{{a, b}, {c}, {d, e}}] ⟶ {a, b, c, d, e}
Flatten[{{a, {b, c}}, {{d}, e}}, 1] ⟶ {a, {b, c}, {d}, e}
Partition[{a, b, c, d}, 2, 1] ⟶ {{a, b}, {b, c}, {c, d}}
Split[{a, a, a, b, b, a, a}] ⟶ {{a, a, a}, {b, b}, {a, a}}
ListConvolve[{a, b}, {1, 2, 3, 4, 5}] ⟶ {2a + b, 3a + 2b, 4a + 3b, 5a + 4b}
Position[{a, b, c, a, a}, a] ⟶ {{1}, {4}, {5}}
RotateLeft[{a, b, c, d, e}, 2] ⟶ {c, d, e, a, b}
Join[{a, b, c}, {d, b}] ⟶ {a, b, c, d, b}
Union[{a, a, c, b, b}] ⟶ {a, b, c}
• Transformation rules
{a, b, c, d} /. b p ⟶ {a, p, c, d}
{f[a], f[b], f[c]} /. f[a] p ⟶ {p, f[b], f[c]}
{f[a], f[b], f[c]} /. f[x_] p[x] ⟶ {p[a], p[b], p[c]}
{f[1], f[b], f[2]} /. f[x_Integer] p[x] ⟶ {p[1], f[b], p[2]}
{f[1, 2], f[3], f[4, 5]} /. f[x_, y_] x + y ⟶ {3, f[3], 9}
{f[1], g[2], f[2], g[3]} /. f[1] | g[_] p ⟶ {p, p, f[2], p}
• Numerical functions
Quotient[207, 10] ⟶ 20
Mod[207, 10] ⟶ 7
Floor[1.45] ⟶ 1
Ceiling[1.45] ⟶ 2
IntegerDigits[13, 2] ⟶ {1, 1, 0, 1}
IntegerDigits[13, 2, 6] ⟶ {0, 0, 1, 1, 0, 1}
DigitCount[13, 2, 1] ⟶ 3
FromDigits[{1, 1, 0, 1}, 2] ⟶ 13
The Mathematica programs in these notes are formatted in Mathematica StandardForm .
Continued fractions
The first n terms in the continued fraction representation for a number x can be found from the built-in Mathematica function ContinuedFraction , or from
Floor[NestList[1/Mod[#, 1]&, x, n - 1]]
A rational approximation to the number x can be reconstructed from the continued fraction using FromContinuedFraction or by
Fold[(1/#1 + #2 )&, Last[list], Rest[Reverse[list]]]
The pictures below show the digit sequences of successive iterates obtained from NestList[1/Mod[#, 1]&, x, n] for several numbers x .
… Note that although the usual continued fraction for π looks quite random, modified forms such as
4/(Fold[(#2/#1 + 2)&, 2, Reverse[Range[1, n, 2] 2 ]] - 1)
can be very regular.
Every point in the pattern must correspond to some list of left and right branchings, represented by 0's and 1's respectively; in terms of this list the position of the point is given by Fold[1 + {c, Conjugate[c]} 〚 1 + #2 〛 #1&, 1, Reverse[list]] .