Search NKS | Online
31 - 40 of 42 for Drop
It contains a total of Round[2 t /3] black elements, and if the last element is dropped, it forms a palindrome.
I have always tried to read original writings—for I have often found that later characterizations drop elements crucial for my purposes, or recast history to simplify pedagogy.
The transitions between these states have probabilities given by m[Map[Length, list]] where
m[s_] := With[{q = FoldList[Plus, 0, s]}, ReplacePart[ RotateRight[IdentityMatrix[Last[q]], {0, 1}], 1/Length[s], Flatten[Outer[List, Rest[q], Drop[q, -1] + 1], 1]]]
The average spectrum of sequences generated according to these probabilities can be obtained by computing the correlation function for elements a distance r apart
ξ [list_, r_] := With[{w = (# - Apply[Plus, #]/Length[#] &)[ Flatten[list]]}, w .
Dropping this 1 yields the pattern below.
TMToRM[rules_] := Module[{segs, adrs}, segs = Map[TMCompile, rules] ; adrs = Thread[Map[First, rules] Drop[FoldList[Plus, 1, Map[Length, segs]], -1]]; MapIndexed[(# /.
After a few rules with long periods, the periods obtained drop off rapidly.
But if IntegerDigits[x, 2] involves no consecutive 0's then for example f[x] can be obtained from
2^(b[Join[{1, 1}, #], Length[#]] &)[IntegerDigits[x, 2]] - 1
a[{l_, _}, r_] := ({l + (5r - 3#)/2, #} &)[Mod[r, 2]]
a[{l_, 0}, 0] := {l + 1, 0}
a[{l_, 1}, 0] := ({(13 + #(5/2)^IntegerExponent[#, 2])/6, 0} &[6l + 2]
b[list_, i_] := First[Fold[a, {Apply[Plus, Drop[list, -i]], 0}, Apply[Plus, Split[Take[list, -i], #1 #2 ≠ 0 &], 1]]]
(The corresponding expression for t[x] is more complicated.)
It is related to (a) by Gray code reordering of the rows, and to (b) by reordering according to (see page 905 )
BitReverseOrder[a_] := With[{n = Length[a]}, a 〚 Map[FromDigits[Reverse[#], 2] &, IntegerDigits[Range[0, n - 1], 2, Log[2, n]]] + 1 〛 ]
It is also given by
Array[Apply[Times, (-1)^(IntegerDigits[#1, 2, s] Reverse[IntegerDigits[#2, 2, s]])] &, 2^{s,s}, 0]
where (b) is obtained simply by dropping the Reverse .
In the late 1800s it was noted in recreational mathematics that one could find the value of π by looking at randomly dropped needles.
Here are examples of how some of the basic Mathematica constructs used in the notes in this book work:
• Iteration
Nest[f, x, 3] ⟶ f[f[f[x]]]
NestList[f, x, 3] ⟶ {x, f[x], f[f[x]], f[f[f[x]]]}
Fold[f, x, {1, 2}] ⟶ f[f[x, 1], 2]
FoldList[f, x, {1, 2}] ⟶ {x, f[x, 1], f[f[x, 1], 2]}
• Functional operations
Function[x, x + k][a] ⟶ a + k
(# + k&)[a] ⟶ a + k
(r[#1] + s[#2]&)[a, b] ⟶ r[a] + s[b]
Map[f, {a, b, c}] ⟶ {f[a], f[b], f[c]}
Apply[f, {a, b, c}] ⟶ f[a, b, c]
Select[{1, 2, 3, 4, 5}, EvenQ] ⟶ {2, 4}
MapIndexed[f, {a, b, c}] ⟶ {f[a, {1}], f[b, {2}], f[c, {3}]}
• List manipulation
{a, b, c, d} 〚 3 〛 ⟶ c
{a, b, c, d} 〚 {2, 4, 3, 2} 〛 ⟶ {b, d, c, b}
Take[{a, b, c, d, e}, 2] ⟶ {a, b}
Drop[{a, b, c, d, e}, -2] ⟶ {a, b, c}
Rest[{a, b, c, d}] ⟶ {b, c, d}
ReplacePart[{a, b, c, d}, x, 3] ⟶ {a, b, x, d}
Length[{a, b, c}] ⟶ 3
Range[5] ⟶ {1, 2, 3, 4, 5}
Table[f[i], {i, 4}] ⟶ {f[1], f[2], f[3], f[4]}
Table[f[i, j], {i, 2}, {j, 3}] ⟶ {{f[1, 1], f[1, 2], f[1, 3]}, {f[2, 1], f[2, 2], f[2, 3]}}
Array[f, {2, 2}] ⟶ {{f[1, 1], f[1, 2]}, {f[2, 1], f[2, 2]}}
Flatten[{{a, b}, {c}, {d, e}}] ⟶ {a, b, c, d, e}
Flatten[{{a, {b, c}}, {{d}, e}}, 1] ⟶ {a, {b, c}, {d}, e}
Partition[{a, b, c, d}, 2, 1] ⟶ {{a, b}, {b, c}, {c, d}}
Split[{a, a, a, b, b, a, a}] ⟶ {{a, a, a}, {b, b}, {a, a}}
ListConvolve[{a, b}, {1, 2, 3, 4, 5}] ⟶ {2a + b, 3a + 2b, 4a + 3b, 5a + 4b}
Position[{a, b, c, a, a}, a] ⟶ {{1}, {4}, {5}}
RotateLeft[{a, b, c, d, e}, 2] ⟶ {c, d, e, a, b}
Join[{a, b, c}, {d, b}] ⟶ {a, b, c, d, b}
Union[{a, a, c, b, b}] ⟶ {a, b, c}
• Transformation rules
{a, b, c, d} /. b p ⟶ {a, p, c, d}
{f[a], f[b], f[c]} /. f[a] p ⟶ {p, f[b], f[c]}
{f[a], f[b], f[c]} /. f[x_] p[x] ⟶ {p[a], p[b], p[c]}
{f[1], f[b], f[2]} /. f[x_Integer] p[x] ⟶ {p[1], f[b], p[2]}
{f[1, 2], f[3], f[4, 5]} /. f[x_, y_] x + y ⟶ {3, f[3], 9}
{f[1], g[2], f[2], g[3]} /. f[1] | g[_] p ⟶ {p, p, f[2], p}
• Numerical functions
Quotient[207, 10] ⟶ 20
Mod[207, 10] ⟶ 7
Floor[1.45] ⟶ 1
Ceiling[1.45] ⟶ 2
IntegerDigits[13, 2] ⟶ {1, 1, 0, 1}
IntegerDigits[13, 2, 6] ⟶ {0, 0, 1, 1, 0, 1}
DigitCount[13, 2, 1] ⟶ 3
FromDigits[{1, 1, 0, 1}, 2] ⟶ 13
The Mathematica programs in these notes are formatted in Mathematica StandardForm .