Search NKS | Online
21 - 25 of 25 for Select
Given an original DNF list s , this can be done using PI[s, n] :
PI[s_, n_] := Union[Flatten[ FixedPointList[f[Last[#], n] &, {{}, s}] 〚 All, 1 〛 , 1]]
g[a_, b_] := With[{i = Position[Transpose[{a, b}], {0,1}]}, If[Length[i] 1 && Delete[a, i] === Delete[b, i], {ReplacePart[a, _, i]}, {}]]
f[s_, n_] := With[ {w = Flatten[Apply[Outer[g, #1, #2, 1] &, Partition[Table[ Select[s, Count[#, 1] i &], {i, 0, n}], 2, 1], {1}], 3]}, {Complement[s, w, SameTest MatchQ], w}]
The minimal DNF then consists of a collection of these prime implicants.
At first it was thought that the visual system might be sensitive only to the overall autocorrelation of an image, given by the probability that randomly selected points have the same color.
Here are examples of how some of the basic Mathematica constructs used in the notes in this book work:
• Iteration
Nest[f, x, 3] ⟶ f[f[f[x]]]
NestList[f, x, 3] ⟶ {x, f[x], f[f[x]], f[f[f[x]]]}
Fold[f, x, {1, 2}] ⟶ f[f[x, 1], 2]
FoldList[f, x, {1, 2}] ⟶ {x, f[x, 1], f[f[x, 1], 2]}
• Functional operations
Function[x, x + k][a] ⟶ a + k
(# + k&)[a] ⟶ a + k
(r[#1] + s[#2]&)[a, b] ⟶ r[a] + s[b]
Map[f, {a, b, c}] ⟶ {f[a], f[b], f[c]}
Apply[f, {a, b, c}] ⟶ f[a, b, c]
Select[{1, 2, 3, 4, 5}, EvenQ] ⟶ {2, 4}
MapIndexed[f, {a, b, c}] ⟶ {f[a, {1}], f[b, {2}], f[c, {3}]}
• List manipulation
{a, b, c, d} 〚 3 〛 ⟶ c
{a, b, c, d} 〚 {2, 4, 3, 2} 〛 ⟶ {b, d, c, b}
Take[{a, b, c, d, e}, 2] ⟶ {a, b}
Drop[{a, b, c, d, e}, -2] ⟶ {a, b, c}
Rest[{a, b, c, d}] ⟶ {b, c, d}
ReplacePart[{a, b, c, d}, x, 3] ⟶ {a, b, x, d}
Length[{a, b, c}] ⟶ 3
Range[5] ⟶ {1, 2, 3, 4, 5}
Table[f[i], {i, 4}] ⟶ {f[1], f[2], f[3], f[4]}
Table[f[i, j], {i, 2}, {j, 3}] ⟶ {{f[1, 1], f[1, 2], f[1, 3]}, {f[2, 1], f[2, 2], f[2, 3]}}
Array[f, {2, 2}] ⟶ {{f[1, 1], f[1, 2]}, {f[2, 1], f[2, 2]}}
Flatten[{{a, b}, {c}, {d, e}}] ⟶ {a, b, c, d, e}
Flatten[{{a, {b, c}}, {{d}, e}}, 1] ⟶ {a, {b, c}, {d}, e}
Partition[{a, b, c, d}, 2, 1] ⟶ {{a, b}, {b, c}, {c, d}}
Split[{a, a, a, b, b, a, a}] ⟶ {{a, a, a}, {b, b}, {a, a}}
ListConvolve[{a, b}, {1, 2, 3, 4, 5}] ⟶ {2a + b, 3a + 2b, 4a + 3b, 5a + 4b}
Position[{a, b, c, a, a}, a] ⟶ {{1}, {4}, {5}}
RotateLeft[{a, b, c, d, e}, 2] ⟶ {c, d, e, a, b}
Join[{a, b, c}, {d, b}] ⟶ {a, b, c, d, b}
Union[{a, a, c, b, b}] ⟶ {a, b, c}
• Transformation rules
{a, b, c, d} /. b p ⟶ {a, p, c, d}
{f[a], f[b], f[c]} /. f[a] p ⟶ {p, f[b], f[c]}
{f[a], f[b], f[c]} /. f[x_] p[x] ⟶ {p[a], p[b], p[c]}
{f[1], f[b], f[2]} /. f[x_Integer] p[x] ⟶ {p[1], f[b], p[2]}
{f[1, 2], f[3], f[4, 5]} /. f[x_, y_] x + y ⟶ {3, f[3], 9}
{f[1], g[2], f[2], g[3]} /. f[1] | g[_] p ⟶ {p, p, f[2], p}
• Numerical functions
Quotient[207, 10] ⟶ 20
Mod[207, 10] ⟶ 7
Floor[1.45] ⟶ 1
Ceiling[1.45] ⟶ 2
IntegerDigits[13, 2] ⟶ {1, 1, 0, 1}
IntegerDigits[13, 2, 6] ⟶ {0, 0, 1, 1, 0, 1}
DigitCount[13, 2, 1] ⟶ 3
FromDigits[{1, 1, 0, 1}, 2] ⟶ 13
The Mathematica programs in these notes are formatted in Mathematica StandardForm .
CTToR110[rules_ /; Select[rules, Mod[Length[#], 6] ≠ 0 &] {}, init_] := Module[{g1, g2, g3, nr = 0, x1, y1, sp}, g1 = Flatten[ Map[If[#1 === {}, {{{2}}}, {{{1, 3, 5 - First[#1]}}, Table[ {4, 5 - # 〚 n 〛 }, {n, 2, Length[#]}]}] &, rules] /. a_Integer Map[({d[# 〚 1 〛 , # 〚 2 〛 ], s[# 〚 3 〛 ]}) &, Partition[c[a], 3]], 4]; g2 = g1 = MapThread[If[#1 === #2 === {d[22, 11], s3}, {d[ 20, 8], s3}, #1] &, {g1, RotateRight[g1, 6]}]; While[Mod[ Apply[Plus, Map[# 〚 1, 2 〛 &, g2, 30] ≠ 0, nr++; g2 = Join[ g2, g1]]; y1 = g2 〚 1, 1, 2 〛 - 11; If[y1 < 0, y1 += 30]; Cases[ Last[g2] 〚 2 〛 , s[d[x_, y1], _, _, a_] (x1 = x + Length[a])]; g3 = Fold[sadd, {d[x1, y1], {}}, g2]; sp = Ceiling[5 Length[ g3 〚 2 〛 ]/(28 nr) + 2]; {Join[Fold[sadd, {d[17, 1], {}}, Flatten[Table[{{d[sp 28 + 6, 1], s[5]}, {d[398, 1], s[5]}, { d[342, 1], s[5]}, {d[370, 1], s[5]}}, {3}], 1]] 〚 2 〛 , bg[ 4, 11]], Flatten[Join[Table[bgi, {sp 2 + 1 + 24 Length[init]}], init /. {0 init0, 1 init1}, bg[1, 9], bg[6, 60 - g2 〚 1, 1, 1 〛 + g3 〚 1, 1 〛 + If[g2 〚 1, 1, 2 〛 < g3 〚 1, 2 〛 , 8, 0]]]], g3 〚 2 〛 }]
s[1] = struct[{3, 0, 1, 10, 4, 8}, 2];
s[2] = struct[{3, 0, 1, 1, 619, 15}, 2];
s[3] = struct[{3, 0, 1, 10, 4956, 18}, 2];
s[4] = struct[{0, 0, 9, 10, 4, 8}];
s[5] = struct[{5, 0, 9, 14, 1, 1}];
{c[1], c[2]} = Map[Join[{22, 11, 3, 39, 3, 1}, #] &, {{63, 12, 2, 48, 5, 4, 29, 26, 4, 43, 26, 4, 23, 3, 4, 47, 4, 4}, {87, 6, 2, 32, 2, 4, 13, 23, 4, 27, 16, 4}}];
{c[3], c[4], c[5]} = Map[Join[#, {4, 17, 22, 4, 39, 27, 4, 47, 4, 4}] &, {{17, 22, 4, 23, 24, 4, 31, 29}, {17, 22, 4, 47, 18, 4, 15, 19}, {41, 16, 4, 47, 18, 4, 15, 19}}]
{init0, init1} = Map[IntegerDigits[216 (# + 432 10 49 ), 2] &, {246005560154658471735510051750569922628065067661, 1043746165489466852897089830441756550889834709645}]
bgi = IntegerDigits[9976, 2]
bg[s_, n_] := Array[bgi 〚 1 + Mod[# - 1, 14] 〛 &, n, s]
ev[s[d[x_, y_], pl_, pr_, b_]] := Module[{r, pl1, pr1}, r = Sign[BitAnd[2^ListConvolve[{1, 2, 4}, Join[bg[pl - 2, 2], b, bg[pr, 2]]], 110]]; pl1 = (Position[r - bg[pl + 3, Length[r]], 1 | -1] /. {} {{Length[r]}}) 〚 1, 1 〛 ; pr1 = Max[pl1, (Position[r - bg[pr + 5 - Length[r], Length[r]], 1 | -1] /. {} {{1}}) 〚 -1, 1 〛 ]; s[d[x + pl1 - 2, y + 1], pl1 + Mod[pl + 2, 14], 1 + Mod[pr + 4, 14] + pr1 - Length[r], Take[r, {pl1, pr1}]]]
struct[{x_, y_, pl_, pr_, b_, bl_}, p_Integer : 1] := Module[ {gr = s[d[x, y], pl, pr, IntegerDigits[b, 2, bl]], p2 = p + 1}, Drop[NestWhile[Append[#, ev[Last[#]]] &, {gr}, If[Rest[Last[#]] === Rest[gr], p2--]; p2 > 0 &], -1]]
sadd[{d[x_, y_], b_}, {d[dx_, dy_], st_}] := Module[{x1 = dx - x, y1 = dy - y, b2, x2, y2}, While[y1 > 0, {x1, y1} += If[Length[st] 30, {8, -30}, {-2, -3}]]; b2 = First[Cases[st, s[d[x3_, -y1], pl_, _, sb_] Join[bg[pl - x1 - x3, x1 + x3], x2 = x3 + Length[sb]; y2 = -y1; sb]]]; {d[x2, y2], Join[b, b2]}]
CTToR110[{{}}, {1}] yields blocks of lengths {7204, 1873, 7088} .
Most randomly selected primitive recursive functions show very simple behavior—either constant or linearly increasing when fed successive integers as arguments.