Search NKS | Online

281 - 290 of 310 for Nest
The following generates explicit lists of n -input Boolean functions requiring successively larger numbers of Nand operations: Map[FromDigits[#, 2] &, NestWhile[Append[#, Complement[Flatten[Table[Outer[1 - Times[##] &, # 〚 i 〛 , # 〚 -i 〛 , 1], {i, Length[#]}], 2], Flatten[#, 1]]] &, {1 - Transpose[IntegerDigits[Range[2 n ] - 1, 2, n]]}, Length[Flatten[#, 1]] < 2 2 n &], {2}] The results for 2-step cellular automaton evolution in the main text were found by a recursive procedure.
Then the rules for the language consisting of balanced runs of parentheses (see page 939 ) can be written as {s[e]  s[e, e], s[e]  s["(", e, ")"], s[e]  s["(",")"]} Different expressions in the language can be obtained by applying different sequences of these rules, say using (this gives so-called leftmost derivations) Fold[# /. rules 〚 #2 〛 &, s[e], list] Given an expression, one can then use the following to find a list of rules that will generate it—if this exists: Parse[rules_, expr_] := Catch[Block[{t = {}}, NestWhile[ ReplaceList[#, MapIndexed[ReverseRule, rules]] &, {{expr, {}}}, (# /.
The pictures below show the lowest-numbered cellular automata that generate respectively powers of two, squares and the nested Thue–Morse sequence of page 83 (compare rule 150).
Here are examples of how some of the basic Mathematica constructs used in the notes in this book work: • Iteration Nest[f, x, 3] ⟶ f[f[f[x]]] NestList[f, x, 3] ⟶ {x, f[x], f[f[x]], f[f[f[x]]]} Fold[f, x, {1, 2}] ⟶ f[f[x, 1], 2] FoldList[f, x, {1, 2}] ⟶ {x, f[x, 1], f[f[x, 1], 2]} • Functional operations Function[x, x + k][a] ⟶ a + k (# + k&)[a] ⟶ a + k (r[#1] + s[#2]&)[a, b] ⟶ r[a] + s[b] Map[f, {a, b, c}] ⟶ {f[a], f[b], f[c]} Apply[f, {a, b, c}] ⟶ f[a, b, c] Select[{1, 2, 3, 4, 5}, EvenQ] ⟶ {2, 4} MapIndexed[f, {a, b, c}] ⟶ {f[a, {1}], f[b, {2}], f[c, {3}]} • List manipulation {a, b, c, d} 〚 3 〛 ⟶ c {a, b, c, d} 〚 {2, 4, 3, 2} 〛 ⟶ {b, d, c, b} Take[{a, b, c, d, e}, 2] ⟶ {a, b} Drop[{a, b, c, d, e}, -2] ⟶ {a, b, c} Rest[{a, b, c, d}] ⟶ {b, c, d} ReplacePart[{a, b, c, d}, x, 3] ⟶ {a, b, x, d} Length[{a, b, c}] ⟶ 3 Range[5] ⟶ {1, 2, 3, 4, 5} Table[f[i], {i, 4}] ⟶ {f[1], f[2], f[3], f[4]} Table[f[i, j], {i, 2}, {j, 3}] ⟶ {{f[1, 1], f[1, 2], f[1, 3]}, {f[2, 1], f[2, 2], f[2, 3]}} Array[f, {2, 2}] ⟶ {{f[1, 1], f[1, 2]}, {f[2, 1], f[2, 2]}} Flatten[{{a, b}, {c}, {d, e}}] ⟶ {a, b, c, d, e} Flatten[{{a, {b, c}}, {{d}, e}}, 1] ⟶ {a, {b, c}, {d}, e} Partition[{a, b, c, d}, 2, 1] ⟶ {{a, b}, {b, c}, {c, d}} Split[{a, a, a, b, b, a, a}] ⟶ {{a, a, a}, {b, b}, {a, a}} ListConvolve[{a, b}, {1, 2, 3, 4, 5}] ⟶ {2a + b, 3a + 2b, 4a + 3b, 5a + 4b} Position[{a, b, c, a, a}, a] ⟶ {{1}, {4}, {5}} RotateLeft[{a, b, c, d, e}, 2] ⟶ {c, d, e, a, b} Join[{a, b, c}, {d, b}] ⟶ {a, b, c, d, b} Union[{a, a, c, b, b}] ⟶ {a, b, c} • Transformation rules {a, b, c, d} /. b  p ⟶ {a, p, c, d} {f[a], f[b], f[c]} /. f[a]  p ⟶ {p, f[b], f[c]} {f[a], f[b], f[c]} /. f[x_]  p[x] ⟶ {p[a], p[b], p[c]} {f[1], f[b], f[2]} /. f[x_Integer]  p[x] ⟶ {p[1], f[b], p[2]} {f[1, 2], f[3], f[4, 5]} /. f[x_, y_]  x + y ⟶ {3, f[3], 9} {f[1], g[2], f[2], g[3]} /. f[1] | g[_]  p ⟶ {p, p, f[2], p} • Numerical functions Quotient[207, 10] ⟶ 20 Mod[207, 10] ⟶ 7 Floor[1.45] ⟶ 1 Ceiling[1.45] ⟶ 2 IntegerDigits[13, 2] ⟶ {1, 1, 0, 1} IntegerDigits[13, 2, 6] ⟶ {0, 0, 1, 1, 0, 1} DigitCount[13, 2, 1] ⟶ 3 FromDigits[{1, 1, 0, 1}, 2] ⟶ 13 The Mathematica programs in these notes are formatted in Mathematica StandardForm .
And if one has nested lemmas one can end up with a proof that is in effect like a tree.
. , or effectively Nest[ ω # &, ω , ω ] . ε 0 is the smallest solution to ω ε  ε .
Other significant publications of mine providing relevant summaries were (the dates here are for actual publication—sometimes close to writing, but sometimes long delayed): • "Computers in science and mathematics" (September 1984) ( Scientific American article about foundations of the computational approach to science and mathematics) • "Cellular automata as models of complexity" (October 1984) ( Nature article introducing cellular automata) • "Geometry of binomial coefficients" (November 1984) (additive cellular automata and nested patterns) • "Twenty problems in the theory of cellular automata" (1985) (a list of unsolved problems to attack—most now finally resolved in this book) • "Tables of cellular automaton properties" (June 1986) (features of elementary cellular automata) • "Cryptography with cellular automata" (1986) (using rule 30 as a cryptosystem) • "Complex systems theory" (1988) (1984 speech suggesting the research direction for the new Santa Fe Institute)
With a rule given in this form, each step in the evolution of the mobile automaton corresponds to the function MAStep[rule_, {list_List, n_Integer}] /; (1 < n < Length[list]) := Apply[{ReplacePart[list, #1, n], n + #2}&, Replace[Take[list, {n - 1, n + 1}], rule]] The complete evolution for many steps can then be obtained with MAEvolveList[rule_, init_List, t_Integer] := NestList[MAStep[rule, #]&, init, t] (The program will run more efficiently if Dispatch is applied to the rule before giving it as input.)
They found repetitive and nested behavior, but did not investigate enough examples to discover the more complex behavior shown in the main text.
In that case, the evolution is effectively 1D, and turns out to follow elementary rule 22, thus producing the infinitely growing nested pattern shown on page 263 .
1 ... 26272829