Search NKS | Online
251 - 260 of 310 for Nest
In Roman and later architecture, rooms in buildings have quite often been arranged in roughly nested patterns (an extreme example being the Castel del Monte from the 1200s). … And starting in the early 1200s, Gothic windows were often constructed with levels of roughly tree-like nested forms (see above ). … Although paperfolding has presumably been practiced for at least 2000 years, even the nested form on page 892 seems to have been noticed only very recently.
(The presence of nested structure is particularly evident in FoldList[Plus, 0, Table[Mod[h n, 1] - 1/2, {n, max}]] .)
Block cellular automata
With a rule of the form {{1, 1} {1, 1}, {1, 0} {1, 0}, {0, 1} {0, 0}, {0, 0} {0, 1}} the evolution of a block cellular automaton with blocks of size n can be implemented using
BCAEvolveList[{n_Integer, rule_}, init_, t_] := FoldList[BCAStep[{n, rule}, #1, #2]&, init, Range[t]] /; Mod[Length[init], n] 0
BCAStep[{n_, rule_}, a_, d_] := RotateRight[ Flatten[Partition[RotateLeft[a, d], n]/.rule], d]
Starting with a single black cell, none of the k = 2 , n = 2 block cellular automata generate anything beyond simple nested patterns.
Fibonacci[n] can be obtained in many ways:
• (GoldenRatio n - (-GoldenRatio) -n )/ √ 5
• Round[GoldenRatio n / √ 5 ]
• 2 1 - n Coefficient[(1 + √ 5 ) n , √ 5 ]
• MatrixPower[{{1, 1}, {1, 0}}, n - 1] 〚 1, 1 〛
• Numerator[NestList[1/(1 + #)&, 1, n]]
• Coefficient[Series[1/(1 - t - t 2 ), {t, 0, n}], t n - 1 ]
• Sum[Binomial[n - i - 1, i], {i, 0, (n - 1)/2}]
• 2 n - 2 - Count[IntegerDigits[Range[0, 2 n - 2 ], 2], {___, 1, 1, ___}]
A fast method for evaluating Fibonacci[n] is
First[Fold[f, {1, 0, -1}, Rest[IntegerDigits[n, 2]]]]
f[{a_, b_, s_}, 0] = {a (a + 2b), s + a (2a - b), 1}
f[{a_, b_, s_}, 1] = {-s + (a + b) (a + 2b), a (a + 2b), -1}
Fibonacci numbers appear to have first arisen in perhaps 200 BC in work by Pingala on enumerating possible patterns of poetry formed from syllables of two lengths. … In addition:
• GoldenRatio is the solution to x 1 + 1/x or x 2 x + 1
• The right-hand rectangle in is similar to the whole rectangle when the aspect ratio is GoldenRatio
• Cos[ π /5] Cos[36 ° ] GoldenRatio/2
• The ratio of the length of the diagonal to the length of a side in a regular pentagon is GoldenRatio
• The corners of an icosahedron are at coordinates
Flatten[Array[NestList[RotateRight, {0, (-1) #1 GoldenRatio, (-1) #2 }, 3]&, {2, 2}], 2]
• 1 + FixedPoint[N[1/(1 + #), k] &, 1] approximates GoldenRatio to k digits, as does FixedPoint[N[Sqrt[1 + #],k]&, 1]
• A successive angle difference of GoldenRatio radians yields points maximally separated around a circle (see page 1006 ).
The sequence on step t can be obtained from Nest[Join[#, 1 - #] &, {1}, t - 1] . … The resulting curve has a nested form, with envelope n^Log[3, 2] .
But in all of these pictures I found nothing beyond repetitive and nested behavior.
The evolution of the arithmetic system is given by
ASEvolveList[{n_, rules_}, init_, t_] := NestList[(Mod[#, n] /. rules)[#] &, init, t]
Given a value m obtained in the evolution of the arithmetic system, the state of the register machine to which it corresponds is
{Mod[m, p] + 1, Map[Last, FactorInteger[ Product[Prime[i], {i, nr}] Quotient[m, p]]] - 1}
Note that it is possible to have each successive step involve only multiplication, with no addition, at the cost of using considerably larger numbers overall.
The curves obtained in this case show a definite nested structure, in which the value at a point x is essentially determined directly from the base 2 digit sequence of x .
And indeed, so far as I can tell, only in those cases where there is fairly simple nested behavior is any direct analog of renormalization group methods useful.
Then starting with a single black cell at the origin, represented by {{0, 0}} , the cluster can be grown for t steps as follows:
AEvolve[t_] := Nest[AStep, {{0, 0}}, t]
AStep[c_] := If[!