Search NKS | Online
241 - 250 of 255 for Apply
But to apply a rule like a_ a ∧ (b ∨ ¬ b) requires in effect choosing some new expression for b (see page 1155 ).
To model the pouring of sand into a pile one can consider a series of cycles, in which at each cycle one first adds 4 to the value of the center cell, then repeatedly applies the rule until a new fixed configuration FixedPoint[SandStep, s] is obtained.
Probably the simplest is a statement shown to be unprovable in Peano arithmetic by Laurence Kirby and Jeff Paris in 1982: that certain sequences g[n] defined by Reuben Goodstein in 1944 are of limited length for all n , where
g[n_] := Map[First, NestWhileList[ {f[#] - 1, Last[#] + 1} &, {n, 3}, First[#] > 0 &]]
f[{0, _}] = 0; f[{n_, k_}] := Apply[Plus, MapIndexed[#1 k^f[{#2 〚 1 〛 - 1, k}] &, Reverse[IntegerDigits[n, k - 1]]]]
As in the pictures below, g[1] is {1, 0} , g[2] is {2, 2, 1, 0} and g[3] is {3, 3, 3, 2, 1, 0} . g[4] increases quadratically for a long time, with only element 3 × 2 402653211 - 2 finally being 0.
As early as 1851, for example, Eugène Prouhet showed that if sequences of integers were partitioned according to sequence (b) on page 83 , then sums of powers of these integers would be equal: thus Apply[Plus, Flatten[Position[s, i]] k ] is equal for i = 0 and i = 1 if s is a sequence of the form (b) on page 83 with length 2 m , m > k .
In general, linear feedback shift registers can have "taps" at any list of positions on the register, so that their evolution is given by
LFSRStep[taps_List, list_] := Append[Rest[list], Mod[Apply[Plus, list 〚 taps 〛 ], 2]]
(With taps specified by the positions of 1's in a vector of 0's, the inside of the Mod can be replaced by vec . list as on page 1087 .) For a register of size n the maximal period of 2 n -1 is obtained whenever x n + Apply[Plus, x taps - 1 ] is one of the EulerPhi[2 n - 1]/n primitive polynomials that appear in Factor[Cyclotomic[2 n - 1, x], Modulus 2] .
The notion of applying scientific methods to the study of human thinking developed largely with the rise of the field of psychology in the mid-1800s.
And by the 1970s, computer experiments were mostly oriented towards ordinary differential equations and strange attractors, rather than towards systems with large numbers of components, to which the Second Law might apply.
Here are examples of how some of the basic Mathematica constructs used in the notes in this book work:
• Iteration
Nest[f, x, 3] ⟶ f[f[f[x]]]
NestList[f, x, 3] ⟶ {x, f[x], f[f[x]], f[f[f[x]]]}
Fold[f, x, {1, 2}] ⟶ f[f[x, 1], 2]
FoldList[f, x, {1, 2}] ⟶ {x, f[x, 1], f[f[x, 1], 2]}
• Functional operations
Function[x, x + k][a] ⟶ a + k
(# + k&)[a] ⟶ a + k
(r[#1] + s[#2]&)[a, b] ⟶ r[a] + s[b]
Map[f, {a, b, c}] ⟶ {f[a], f[b], f[c]}
Apply[f, {a, b, c}] ⟶ f[a, b, c]
Select[{1, 2, 3, 4, 5}, EvenQ] ⟶ {2, 4}
MapIndexed[f, {a, b, c}] ⟶ {f[a, {1}], f[b, {2}], f[c, {3}]}
• List manipulation
{a, b, c, d} 〚 3 〛 ⟶ c
{a, b, c, d} 〚 {2, 4, 3, 2} 〛 ⟶ {b, d, c, b}
Take[{a, b, c, d, e}, 2] ⟶ {a, b}
Drop[{a, b, c, d, e}, -2] ⟶ {a, b, c}
Rest[{a, b, c, d}] ⟶ {b, c, d}
ReplacePart[{a, b, c, d}, x, 3] ⟶ {a, b, x, d}
Length[{a, b, c}] ⟶ 3
Range[5] ⟶ {1, 2, 3, 4, 5}
Table[f[i], {i, 4}] ⟶ {f[1], f[2], f[3], f[4]}
Table[f[i, j], {i, 2}, {j, 3}] ⟶ {{f[1, 1], f[1, 2], f[1, 3]}, {f[2, 1], f[2, 2], f[2, 3]}}
Array[f, {2, 2}] ⟶ {{f[1, 1], f[1, 2]}, {f[2, 1], f[2, 2]}}
Flatten[{{a, b}, {c}, {d, e}}] ⟶ {a, b, c, d, e}
Flatten[{{a, {b, c}}, {{d}, e}}, 1] ⟶ {a, {b, c}, {d}, e}
Partition[{a, b, c, d}, 2, 1] ⟶ {{a, b}, {b, c}, {c, d}}
Split[{a, a, a, b, b, a, a}] ⟶ {{a, a, a}, {b, b}, {a, a}}
ListConvolve[{a, b}, {1, 2, 3, 4, 5}] ⟶ {2a + b, 3a + 2b, 4a + 3b, 5a + 4b}
Position[{a, b, c, a, a}, a] ⟶ {{1}, {4}, {5}}
RotateLeft[{a, b, c, d, e}, 2] ⟶ {c, d, e, a, b}
Join[{a, b, c}, {d, b}] ⟶ {a, b, c, d, b}
Union[{a, a, c, b, b}] ⟶ {a, b, c}
• Transformation rules
{a, b, c, d} /. b p ⟶ {a, p, c, d}
{f[a], f[b], f[c]} /. f[a] p ⟶ {p, f[b], f[c]}
{f[a], f[b], f[c]} /. f[x_] p[x] ⟶ {p[a], p[b], p[c]}
{f[1], f[b], f[2]} /. f[x_Integer] p[x] ⟶ {p[1], f[b], p[2]}
{f[1, 2], f[3], f[4, 5]} /. f[x_, y_] x + y ⟶ {3, f[3], 9}
{f[1], g[2], f[2], g[3]} /. f[1] | g[_] p ⟶ {p, p, f[2], p}
• Numerical functions
Quotient[207, 10] ⟶ 20
Mod[207, 10] ⟶ 7
Floor[1.45] ⟶ 1
Ceiling[1.45] ⟶ 2
IntegerDigits[13, 2] ⟶ {1, 1, 0, 1}
IntegerDigits[13, 2, 6] ⟶ {0, 0, 1, 1, 0, 1}
DigitCount[13, 2, 1] ⟶ 3
FromDigits[{1, 1, 0, 1}, 2] ⟶ 13
The Mathematica programs in these notes are formatted in Mathematica StandardForm .
Quantum gravity
That there should be quantum effects in gravity was already noted in the 1910s, and when quantum field theory began to develop in the 1930s, there were immediately attempts to apply it to gravity.
CTToR110[rules_ /; Select[rules, Mod[Length[#], 6] ≠ 0 &] {}, init_] := Module[{g1, g2, g3, nr = 0, x1, y1, sp}, g1 = Flatten[ Map[If[#1 === {}, {{{2}}}, {{{1, 3, 5 - First[#1]}}, Table[ {4, 5 - # 〚 n 〛 }, {n, 2, Length[#]}]}] &, rules] /. a_Integer Map[({d[# 〚 1 〛 , # 〚 2 〛 ], s[# 〚 3 〛 ]}) &, Partition[c[a], 3]], 4]; g2 = g1 = MapThread[If[#1 === #2 === {d[22, 11], s3}, {d[ 20, 8], s3}, #1] &, {g1, RotateRight[g1, 6]}]; While[Mod[ Apply[Plus, Map[# 〚 1, 2 〛 &, g2, 30] ≠ 0, nr++; g2 = Join[ g2, g1]]; y1 = g2 〚 1, 1, 2 〛 - 11; If[y1 < 0, y1 += 30]; Cases[ Last[g2] 〚 2 〛 , s[d[x_, y1], _, _, a_] (x1 = x + Length[a])]; g3 = Fold[sadd, {d[x1, y1], {}}, g2]; sp = Ceiling[5 Length[ g3 〚 2 〛 ]/(28 nr) + 2]; {Join[Fold[sadd, {d[17, 1], {}}, Flatten[Table[{{d[sp 28 + 6, 1], s[5]}, {d[398, 1], s[5]}, { d[342, 1], s[5]}, {d[370, 1], s[5]}}, {3}], 1]] 〚 2 〛 , bg[ 4, 11]], Flatten[Join[Table[bgi, {sp 2 + 1 + 24 Length[init]}], init /. {0 init0, 1 init1}, bg[1, 9], bg[6, 60 - g2 〚 1, 1, 1 〛 + g3 〚 1, 1 〛 + If[g2 〚 1, 1, 2 〛 < g3 〚 1, 2 〛 , 8, 0]]]], g3 〚 2 〛 }]
s[1] = struct[{3, 0, 1, 10, 4, 8}, 2];
s[2] = struct[{3, 0, 1, 1, 619, 15}, 2];
s[3] = struct[{3, 0, 1, 10, 4956, 18}, 2];
s[4] = struct[{0, 0, 9, 10, 4, 8}];
s[5] = struct[{5, 0, 9, 14, 1, 1}];
{c[1], c[2]} = Map[Join[{22, 11, 3, 39, 3, 1}, #] &, {{63, 12, 2, 48, 5, 4, 29, 26, 4, 43, 26, 4, 23, 3, 4, 47, 4, 4}, {87, 6, 2, 32, 2, 4, 13, 23, 4, 27, 16, 4}}];
{c[3], c[4], c[5]} = Map[Join[#, {4, 17, 22, 4, 39, 27, 4, 47, 4, 4}] &, {{17, 22, 4, 23, 24, 4, 31, 29}, {17, 22, 4, 47, 18, 4, 15, 19}, {41, 16, 4, 47, 18, 4, 15, 19}}]
{init0, init1} = Map[IntegerDigits[216 (# + 432 10 49 ), 2] &, {246005560154658471735510051750569922628065067661, 1043746165489466852897089830441756550889834709645}]
bgi = IntegerDigits[9976, 2]
bg[s_, n_] := Array[bgi 〚 1 + Mod[# - 1, 14] 〛 &, n, s]
ev[s[d[x_, y_], pl_, pr_, b_]] := Module[{r, pl1, pr1}, r = Sign[BitAnd[2^ListConvolve[{1, 2, 4}, Join[bg[pl - 2, 2], b, bg[pr, 2]]], 110]]; pl1 = (Position[r - bg[pl + 3, Length[r]], 1 | -1] /. {} {{Length[r]}}) 〚 1, 1 〛 ; pr1 = Max[pl1, (Position[r - bg[pr + 5 - Length[r], Length[r]], 1 | -1] /. {} {{1}}) 〚 -1, 1 〛 ]; s[d[x + pl1 - 2, y + 1], pl1 + Mod[pl + 2, 14], 1 + Mod[pr + 4, 14] + pr1 - Length[r], Take[r, {pl1, pr1}]]]
struct[{x_, y_, pl_, pr_, b_, bl_}, p_Integer : 1] := Module[ {gr = s[d[x, y], pl, pr, IntegerDigits[b, 2, bl]], p2 = p + 1}, Drop[NestWhile[Append[#, ev[Last[#]]] &, {gr}, If[Rest[Last[#]] === Rest[gr], p2--]; p2 > 0 &], -1]]
sadd[{d[x_, y_], b_}, {d[dx_, dy_], st_}] := Module[{x1 = dx - x, y1 = dy - y, b2, x2, y2}, While[y1 > 0, {x1, y1} += If[Length[st] 30, {8, -30}, {-2, -3}]]; b2 = First[Cases[st, s[d[x3_, -y1], pl_, _, sb_] Join[bg[pl - x1 - x3, x1 + x3], x2 = x3 + Length[sb]; y2 = -y1; sb]]]; {d[x2, y2], Join[b, b2]}]
CTToR110[{{}}, {1}] yields blocks of lengths {7204, 1873, 7088} .