Search NKS | Online
211 - 220 of 272 for Length
If the rules for a one-element-dependence tag system are given in the form {2, {{0, 1}, {0, 1, 1}}} (compare page 1114 ), the initial conditions for the Turing machine are
TagToMTM[{2, rule_}, init_] := With[{b = FoldList[Plus, 1, Map[Length, rule] + 1]}, Drop[Flatten[{Reverse[Flatten[{1, Map[{Map[ {1, 0, Table[0, {b 〚 # + 1 〛 }]} &, #], 1} &, rule], 1}]], 0, 0, Map[{Table[2, {b 〚 # + 1 〛 }], 3} &, init]}], -1]]
surrounded by 0 's, with the head on the leftmost 2 , in state 1 .
(A proof of this without lemmas would probably have to be of length at least 32,910,300.)
With vectors of length n it generically takes about n 2 steps to compute u given v , and a little less than n 3 steps to compute v given u (the best known algorithms—which are based on matrix multiplication—currently involve about n 2.4 steps).
(The shortest excluded block for code 20 is of length 36.)
And of the 196 possible rules involving two colors and blocks of length at most three, 112 have this property.
Starting with a list of the initial conditions for s steps, the configurations for the next s steps are given by
Append[Rest[list], Map[Mod[Apply[Plus, Flatten[c #]], 2]&, Transpose[ Table[RotateLeft[list, {0, i}], {i, -r, r}], {3, 2, 1}]]]
where r = (Length[First[c]] - 1)/2 .
Finding layouts [for networks]
One way to lay out a network g so that network distances in it come as close as possible to ordinary distances in d -dimensional space, is just to search for values of the x[i, k] which minimize a quantity such as
With[{n = Length[g]}, Apply[Plus, Flatten[(Table[Distance[g, {i, j}], {i, n}, {j, n}] 2 - Table[ Sum[(x[i, k] - x[j, k]) 2 , {k, d}], {i, n}, {j, n}]) 2 ]]]
using for example FindMinimum starting say with x[1, _] 0 and all the other x[_, _] Random[] .
The pictures on the next page show patterns obtained with various sequences of choices for the lengths and angles of new stems.
A simple way to define the distance between two points is to say that it is the length of the shortest path between them.
So this suggests that even though they may be specified by very simple rules there are indeed Turing machine computations that cannot actually be carried out except by spending an amount of computational effort that can increase exponentially with the length of input.