Search NKS | Online

11 - 20 of 25 for Select
Implementation [of operators from axioms] Given an axiom system in the form {f[a, f[a, a]]  a, f[a, b]  f[b, a]} one can find rule numbers for the operators f[x, y] with k values for each variable that are consistent with the axiom system by using Module[{c, v}, c = Apply[Function, {v = Union[Level[axioms, {-1}]], Apply[And, axioms]}]; Select[Range[0, k k 2 - 1], With[{u = IntegerDigits[#, k, k 2 ]}, Block[{f}, f[x_, y_] := u 〚 -1 - k x - y 〛 ; Array[c, Table[k, {Length[v]}], 0, And]]] &]] For k = 4 this involves checking nearly 16 4 or 4 billion cases, though many of these can often be avoided, for example by using analogs of the so-called Davis–Putnam rules.
One might have thought that the traditional idea that organisms are selected to be optimal for their environment would already long ago have led to some kind of predictive theory.
And indeed it is my strong suspicion that for essentially all purposes the only reasonable model for important new features of organisms is that they come from programs selected purely at random.
(Biological evolution may conceivably have selected for proteins that fold reliably or are more robust with respect to changes in single amino acids, but there is currently no clear evidence for this.)
Given a list of string specifications, a step in the evolution of the multiway system corresponds to Select[Union[Flatten[Outer[Plus, diff, list, 1], 1]], Abs[#]  # &]
Select[PM[s], Count[#, 1] > 1 &], 2]] while blocks of length n (and at most one error) can be decoded with Drop[(If[#  0, data, MapAt[1 - # &, data, #]] &)[ FromDigits[Mod[data .
In the immune system blocks of DNA—and joins between them—are selected at random by microscopic chemical processes when antibodies are formed.
A subgraph is formally defined to be what one gets by selecting just some subset of connections in a network—and with this definition Kuratowski's theorem must allow extensions of K 5 and K 3,3 where extra nodes have been inserted in the middle of connections.
The first one on the bottom (with 63 comparisons) has a nested structure and uses the method invented by Kenneth Batcher in 1964: Flatten[Reverse[Flatten[With[{m = Ceiling[Log[2, n]] - 1}, Table[With[{d = If[i  m, 2 t , 2 i + 1 - 2 t ]}, Map[ {0, d} + # &, Select[Range[n - d], BitAnd[# - 1, 2 t ]  If[i  m, 0, 2 t ] &]]], {t, 0, m}, {i, t, m}]], 1]], 1] The second one on the bottom also uses 63 comparisons, while the last one is the smallest known for n = 16 : it uses 60 comparisons and was invented by Milton Green in 1969.
One is to toss an object and see which way up or where it lands; the other is to select an object from a collection mixed by shaking.
12