Search NKS | Online
181 - 190 of 191 for Range
As discovered by Srinivasa Ramanujan in 1918 its fluctuations (see below) can be obtained from the formula
1/6 π 2 n Sum[Apply[Plus, Cos[2 π n Select[ Range[s], GCD[s, #] 1 &]/s]]/s 2 , {s, ∞ }]
(c) Squares are taken to be of positive or negative integers, or zero.
Inverse[#2], RotateLeft[ Range[TensorRank[t]]]] &, t, Reverse[gl]]
Laplacian[f_] := Inner[D, Sqrt[Det[g]] (Inverse[g] .
I came up with cellular automata as an attempt to capture the essential features of a range of systems, from self-gravitating gases to neural networks. … As I argue in this book, a vast range of systems must in the end show the same basic phenomena.
Over the range 50 ≲ R ≲ 150 vortices are found to be generated at a cylinder with almost perfect periodicity at a dimensionless frequency (Strouhal number) that increases smoothly from about 0.12 to 0.19.
For multiplication rules, there are normally carries (handled by FromDigits ), but for power cellular automata, these have only limited range, so that g = Mod[#, k α ] & can be used.
One example is parity violation; another is the presence of long-range forces other than gravity.
Here are examples of how some of the basic Mathematica constructs used in the notes in this book work:
• Iteration
Nest[f, x, 3] ⟶ f[f[f[x]]]
NestList[f, x, 3] ⟶ {x, f[x], f[f[x]], f[f[f[x]]]}
Fold[f, x, {1, 2}] ⟶ f[f[x, 1], 2]
FoldList[f, x, {1, 2}] ⟶ {x, f[x, 1], f[f[x, 1], 2]}
• Functional operations
Function[x, x + k][a] ⟶ a + k
(# + k&)[a] ⟶ a + k
(r[#1] + s[#2]&)[a, b] ⟶ r[a] + s[b]
Map[f, {a, b, c}] ⟶ {f[a], f[b], f[c]}
Apply[f, {a, b, c}] ⟶ f[a, b, c]
Select[{1, 2, 3, 4, 5}, EvenQ] ⟶ {2, 4}
MapIndexed[f, {a, b, c}] ⟶ {f[a, {1}], f[b, {2}], f[c, {3}]}
• List manipulation
{a, b, c, d} 〚 3 〛 ⟶ c
{a, b, c, d} 〚 {2, 4, 3, 2} 〛 ⟶ {b, d, c, b}
Take[{a, b, c, d, e}, 2] ⟶ {a, b}
Drop[{a, b, c, d, e}, -2] ⟶ {a, b, c}
Rest[{a, b, c, d}] ⟶ {b, c, d}
ReplacePart[{a, b, c, d}, x, 3] ⟶ {a, b, x, d}
Length[{a, b, c}] ⟶ 3
Range[5] ⟶ {1, 2, 3, 4, 5}
Table[f[i], {i, 4}] ⟶ {f[1], f[2], f[3], f[4]}
Table[f[i, j], {i, 2}, {j, 3}] ⟶ {{f[1, 1], f[1, 2], f[1, 3]}, {f[2, 1], f[2, 2], f[2, 3]}}
Array[f, {2, 2}] ⟶ {{f[1, 1], f[1, 2]}, {f[2, 1], f[2, 2]}}
Flatten[{{a, b}, {c}, {d, e}}] ⟶ {a, b, c, d, e}
Flatten[{{a, {b, c}}, {{d}, e}}, 1] ⟶ {a, {b, c}, {d}, e}
Partition[{a, b, c, d}, 2, 1] ⟶ {{a, b}, {b, c}, {c, d}}
Split[{a, a, a, b, b, a, a}] ⟶ {{a, a, a}, {b, b}, {a, a}}
ListConvolve[{a, b}, {1, 2, 3, 4, 5}] ⟶ {2a + b, 3a + 2b, 4a + 3b, 5a + 4b}
Position[{a, b, c, a, a}, a] ⟶ {{1}, {4}, {5}}
RotateLeft[{a, b, c, d, e}, 2] ⟶ {c, d, e, a, b}
Join[{a, b, c}, {d, b}] ⟶ {a, b, c, d, b}
Union[{a, a, c, b, b}] ⟶ {a, b, c}
• Transformation rules
{a, b, c, d} /. b p ⟶ {a, p, c, d}
{f[a], f[b], f[c]} /. f[a] p ⟶ {p, f[b], f[c]}
{f[a], f[b], f[c]} /. f[x_] p[x] ⟶ {p[a], p[b], p[c]}
{f[1], f[b], f[2]} /. f[x_Integer] p[x] ⟶ {p[1], f[b], p[2]}
{f[1, 2], f[3], f[4, 5]} /. f[x_, y_] x + y ⟶ {3, f[3], 9}
{f[1], g[2], f[2], g[3]} /. f[1] | g[_] p ⟶ {p, p, f[2], p}
• Numerical functions
Quotient[207, 10] ⟶ 20
Mod[207, 10] ⟶ 7
Floor[1.45] ⟶ 1
Ceiling[1.45] ⟶ 2
IntegerDigits[13, 2] ⟶ {1, 1, 0, 1}
IntegerDigits[13, 2, 6] ⟶ {0, 0, 1, 1, 0, 1}
DigitCount[13, 2, 1] ⟶ 3
FromDigits[{1, 1, 0, 1}, 2] ⟶ 13
The Mathematica programs in these notes are formatted in Mathematica StandardForm .
Note that although the usual continued fraction for π looks quite random, modified forms such as
4/(Fold[(#2/#1 + 2)&, 2, Reverse[Range[1, n, 2] 2 ]] - 1)
can be very regular.
Apparently motivated in part by questions in mathematical logic, and in part by work on "simulation games" by Ulam and others, John Conway in 1968 began doing experiments (mostly by hand, but later on a PDP-7 computer) with a variety of different 2D cellular automaton rules, and by 1970 had come up with a simple set of rules he called "The Game of Life", that exhibit a range of complex behavior (see page 249 ).
Starting in earnest in the 1990s, however, the influence of Mathematica has gradually led to broader ranges of examples.