Search NKS | Online

171 - 180 of 210 for Listable
So what this means is that if one were just to go through a list of the simplest few thousand axiom systems one would already be quite likely to find one that represents logic.
An arrangement of black squares with any list of relative offsets will always eventually occur.
(The presence of nested structure is particularly evident in FoldList[Plus, 0, Table[Mod[h n, 1] - 1/2, {n, max}]] .)
Fibonacci[n] can be obtained in many ways: • (GoldenRatio n - (-GoldenRatio) -n )/ √ 5 • Round[GoldenRatio n / √ 5 ] • 2 1 - n Coefficient[(1 + √ 5 ) n , √ 5 ] • MatrixPower[{{1, 1}, {1, 0}}, n - 1] 〚 1, 1 〛 • Numerator[NestList[1/(1 + #)&, 1, n]] • Coefficient[Series[1/(1 - t - t 2 ), {t, 0, n}], t n - 1 ] • Sum[Binomial[n - i - 1, i], {i, 0, (n - 1)/2}] • 2 n - 2 - Count[IntegerDigits[Range[0, 2 n - 2 ], 2], {___, 1, 1, ___}] A fast method for evaluating Fibonacci[n] is First[Fold[f, {1, 0, -1}, Rest[IntegerDigits[n, 2]]]] f[{a_, b_, s_}, 0] = {a (a + 2b), s + a (2a - b), 1} f[{a_, b_, s_}, 1] = {-s + (a + b) (a + 2b), a (a + 2b), -1} Fibonacci numbers appear to have first arisen in perhaps 200 BC in work by Pingala on enumerating possible patterns of poetry formed from syllables of two lengths. … In addition: • GoldenRatio is the solution to x  1 + 1/x or x 2  x + 1 • The right-hand rectangle in is similar to the whole rectangle when the aspect ratio is GoldenRatio • Cos[ π /5]  Cos[36 ° ]  GoldenRatio/2 • The ratio of the length of the diagonal to the length of a side in a regular pentagon is GoldenRatio • The corners of an icosahedron are at coordinates Flatten[Array[NestList[RotateRight, {0, (-1) #1 GoldenRatio, (-1) #2 }, 3]&, {2, 2}], 2] • 1 + FixedPoint[N[1/(1 + #), k] &, 1] approximates GoldenRatio to k digits, as does FixedPoint[N[Sqrt[1 + #],k]&, 1] • A successive angle difference of GoldenRatio radians yields points maximally separated around a circle (see page 1006 ).
The first 2 m elements in the sequence can be obtained from (see page 1081 ) (CoefficientList[Product[1 - z 2 s , {s, 0, m - 1}], z] + 1)/2 The first n elements can also be obtained from (see page 1092 ) Mod[CoefficientList[Series[(1 + Sqrt[(1 - 3x)/(1 + x)])/ (2(1 + x)), {x, 0, n - 1}], x], 2] The sequence occurs many times in this book; it can for example be derived from a column of values in the rule 150 cellular automaton pattern discussed on page 885 .
This is a k = 8 2D cellular automaton in which toppling of sand above a critical slope is captured by updating an array of relative sand heights s according to the rule SandStep[s_]:= s + ListConvolve[ {{0, 1, 0}, {1, -4, 1}, {0, 1, 0}}, UnitStep[s - 4], 2, 0] Starting from any initial condition, the rule eventually yields a fixed configuration with all values less than 4, as in the picture below. … In 1D, the update rule is simply SandStep[s_] := s + ListConvolve[{1, -2, 1}, UnitStep[s - 2], 2, 0] In this case the evolution obtained if one repeatedly adds to the center cell (as in the first picture below) is always quite simple.
For all initial conditions this depth seems at first to increase linearly, then to decrease in a nested way according to FoldList[Plus, 0, Flatten[Table[ {1, 1, Table[-1, {IntegerExponent[i, 2] + 1}]}, {i, m}]]] This quantity alternates between value 1 at position 2 j and value j at position 2 j - j + 1 .
A list that gives the number of elements of each color at step t can then be found from init .
In the first 200 billion digits, the frequencies of 0 through 9 differ from 20 billion by {30841, -85289, 136978, 69393, -78309, -82947, -118485, -32406, 291044, -130820} An early approximation to π was 4 Sum[(-1) k /(2k + 1), {k, 0, m}] 30 digits were obtained with 2 Apply[Times, 2/Rest[NestList[Sqrt[2 + #]&, 0, m]]] An efficient way to compute π to n digits of precision is (# 〚 2 〛 2 /# 〚 3 〛 )& [NestWhile[Apply[Function[{a, b, c, d}, {(a + b)/2, Sqrt[a b], c - d (a - b) 2 , 2 d}], #]&, {1, 1/Sqrt[N[2, n]], 1/4, 1/4}, # 〚 2 〛 ≠ # 〚 2 〛 &]] This requires about Log[2, n] steps, or a total of roughly n Log[n] 2 operations (see page 1134 ).
With more than two piles it was discovered in 1901 that one player can in general force the other to lose by arranging that after each of their moves Apply[BitXor, h]  0 , where h is the list of heights.
1 ... 15161718