Search NKS | Online

131 - 140 of 255 for Apply
In such a rule, given a list of how many neighbors around a given cell (out of s possible) make the cell turn black the outer totalistic code for the rule can be obtained from Apply[Plus, 2^Join[2 list, 2 Range[s + 1] - 1]]
Implementation [of constraint satisfaction] The number of squares violating the constraint used here is given by Cost[list_] := Apply[Plus, Abs[list - RotateLeft[list]]] When applied to all possible patterns, this function yields a distribution with Gaussian tails, but with a sharp point in the middle.
The first attempt at a general system for automated theorem proving was the 1956 Logic Theory Machine of Allen Newell and Herbert Simon —a program which tried to find proofs in basic logic by applying chains of possible axioms. … Some work was nevertheless still done on applying results in mathematical logic to speed up the search process. And in 1963 Alan Robinson suggested the idea of resolution theorem proving, in which one constructs ¬ theorem ∨ axioms , then typically writes this in conjunctive normal form and repeatedly applies rules like ( ¬ p ∨ q) ∧ (p ∨ q)  q to try to reduce it to False , thereby proving given axioms that theorem is True .
With a rule given in this form, each step in the evolution of the mobile automaton corresponds to the function MAStep[rule_, {list_List, n_Integer}] /; (1 < n < Length[list]) := Apply[{ReplacePart[list, #1, n], n + #2}&, Replace[Take[list, {n - 1, n + 1}], rule]] The complete evolution for many steps can then be obtained with MAEvolveList[rule_, init_List, t_Integer] := NestList[MAStep[rule, #]&, init, t] (The program will run more efficiently if Dispatch is applied to the rule before giving it as input.) For the mobile automaton on page 73 , the rule can be given as {{1, 1, 1}  {{0, 0, 0}, -1}, {1, 1, 0}  {{1, 0, 1}, -1}, {1, 0, 1}  {{1, 1, 1}, 1}, {1, 0, 0}  {{1, 0, 0}, 1}, {0, 1, 1}  {{0, 0, 0}, 1}, {0, 1, 0}  {{0, 1, 1}, -1}, {0, 0, 1}  {{1, 0, 1}, 1}, {0, 0, 0}  {{1, 1, 1}, 1}} and MAStep must be rewritten as MAStep[rule_, {list_List, n_Integer}] /; (1 < n < Length[list]) := Apply[{Join[Take[list, {1, n - 2}], #1, Take[list, {n + 2, -1}]], n + #2}&, Replace[Take[list, {n - 1, n + 1}], rule]]
Results of starting with the number 1, then applying the following rule: if the number at a particular step is even, multiply by 3/2; otherwise, add 1, then multiply by 3/2.
Recursive Sequences In the previous section , we saw that it is possible to get behavior of considerable complexity just by applying a variety of operations based on simple arithmetic.
The idea is to look at the average gray level of a cell and its immediate neighbors, and then to get the gray level for that cell at the next step by applying a fixed mapping to the result.
The rule applies only to this active cell.
And the crucial point is then that I suspect that the computation performed by applying these rules is often sophisticated enough to be computationally irreducible—with the result that it must intrinsically produce behavior that seems to us free of obvious laws.
Probably the most striking arise when one tries to apply traditional ideas of logic—and particularly notions of true and false.
1 ... 11121314 ...