Implementation [of substitution systems]
The rule for a neighbor-independent substitution system such as the first one on page 82 can conveniently be given as {1{1, 0}, 0 {0, 1}}{1{1, 0}, 0 {0, 1}}
. And with this representation, the evolution for t steps is given by
SSEvolveList[rule_, init_List, t_Integer] := NestList[Flatten[# /. rule]&, init, t]SSEvolveList[rule_, init_List, t_Integer] := NestList[Flatten[# /. rule]&, init, t]
where in the first example on page 82, the initial condition is {1}{1}
.
An alternative approach is to use strings, representing the rule by {"B""BA", "A""AB"}{"B""BA", "A""AB"}
and the initial condition by "B""B"
. In this case, the evolution can be obtained using
SSEvolveList[rule_, init_String, t_Integer] := NestList[StringReplace[#, rule]&, init, t]SSEvolveList[rule_, init_String, t_Integer] := NestList[StringReplace[#, rule]&, init, t]
For a neighbor-dependent substitution system such as the first one on page 85 the rule can be given as
{{1, 1} {0, 1}, {1, 0} {1, 0}, {0, 1} {0}, {0, 0} {0, 1}}{{1, 1} {0, 1}, {1, 0} {1, 0}, {0, 1} {0}, {0, 0} {0, 1}}
And with this representation, the evolution for t steps is given by
SS2EvolveList[rule_, init_List, t_Integer] := NestList[Flatten[Partition[#, 2, 1] /. rule]&, init, t]SS2EvolveList[rule_, init_List, t_Integer] := NestList[Flatten[Partition[#, 2, 1] /. rule]&, init, t]
where the initial condition for the first example on page 85 is {0, 1, 1, 0}{0, 1, 1, 0}
.