Notes

Chapter 12: The Principle of Computational Equivalence

Section 9: Implications for Mathematics and Its Foundations


Statements in Peano arithmetic

Examples include:

2

\!\(\*SqrtBox[\(2\)]\) is irrational:

¬ a (b (b 0 a × a (Δ Δ 0) × (b × b)))

\[Not]\!\(\*SubscriptBox[\(\[Exists]\),\(a\)]\)\!\(\*SubscriptBox[\(\[Exists]\),\(b\)]\)(b\[NotEqual]0\[And]a\[Times]a==(\[CapitalDelta]\[CapitalDelta]0)\[Times](b\[Times]b)))

• There are infinitely many primes of the form n2 + 1

\!\(\*SuperscriptBox[\(n\),\(2\)]\)+1:

¬ n (c (a (b (n + c) × (n + c) + Δ 0 (Δ Δ a) × (Δ Δ b))))

\[Not]\!\(\*SubscriptBox[\(\[Exists]\),\(n\)]\)(\!\(\*SubscriptBox[\(\[ForAll]\),\(c\)]\)(\!\(\*SubscriptBox[\(\[Exists]\),\(a\)]\)(\!\(\*SubscriptBox[\(\[Exists]\),\(b\)]\)(n+c)\[Times](n+c)+\[CapitalDelta]0==(\[Delta]\[Delta])\[Times](\[CapitalDelta]\[CapitalDelta]b))))

• Every even number (greater than 2) is the sum of two primes (Goldbach's Conjecture; see page 135):

a (b (c((Δ Δ 0) × (Δ Δ a) b + c d (e (f ((f (Δ Δ d) × (Δ Δ e) f Δ 0) (f b f c)))))))

\!\(\*SubscriptBox[\(\[ForAll]\),\(a\)]\)(\!\(\*SubscriptBox[\(\[Exists]\),\(b\)]\)(\!\(\*SubscriptBox[\(\[Exists]\),\(c\)]\)((\[CapitalDelta]\[CapitalDelta]0)\[Times](\[CapitalDelta]\[CapitalDelta]a)==b+c\[And]\!\(\*SubscriptBox[\(\[ForAll]\),\(d\)]\)(\!\(\*SubscriptBox[\(\[ForAll]\),\(e\)]\)(\!\(\*SubscriptBox[\(\[ForAll]\),\(f\)]\)((f==(\[CapitalDelta]\[CapitalDelta]d)\[Times](\[CapitalDelta]\[CapitalDelta]e)\[Or]==\[CapitalDelta]0)\[Implies](f\[NotEqual]b\[And]f\[NotEqual]c)))))))

The last two statements have never been proved true or false, and remain unsolved problems of number theory. The picture shows spacings between n for which n2 + 1

\!\(\*SuperscriptBox[\(n\),\(2\)]\)+1 is prime.



Image Source Notebooks:

From Stephen Wolfram: A New Kind of Science [citation]