
Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of
Turing Machines

Marvin L. Minsky

The Annals of Mathematics, 2nd Ser., Vol. 74, No. 3. (Nov., 1961), pp. 437-455.

Stable URL:

http://links.jstor.org/sici?sici=0003-486X%28196111%292%3A74%3A3%3C437%3ARUOPPO%3E2.0.CO%3B2-N

The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Mon May 14 13:15:22 2007

http://links.jstor.org/sici?sici=0003-486X%28196111%292%3A74%3A3%3C437%3ARUOPPO%3E2.0.CO%3B2-N
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/annals.html

ANNALSOF MATFIIOMATIC.~
Vol. 74, No. 3. November. 1961

Printed in Japan

RECURSIVE UNSOLVABILITY OF POST'S PROBLEM OF

"TAG" AND OTHER TOPICS IN THEORY OF

TURING MACHINES*

(Received August 15, 1960)

1. Two tape non-writing Turing machines.
2. Monogenic normal systems.
3. Recursive functions based on programs of arithmetic instructions.
4. Corollaries: 1. A theorem of Rabin and Scott.

2. A bound on the number of tape symbols.
3. A theorem of Wang.
4. A simple diophantine predicate for Prod@, x).

Introduction

The equivalence of the notions of effective computability as based
(1) on formal systems (e.g., those of Post), and (2) on computing machines
(e.g., those of Turing) has been shown in a number of ways. The main
results of this paper show that the same notions of computability can be
realized within

(1) the highly restricted monogenic formal systems called by Post the
"Tag" systems, and

(2) within a peculiarly restricted variant of Turing machine which has
two tapes, but can neither write on nor erase these tapes.
From these, or rather from the arithmetization device used in their
construction, we obtain also an interesting basis for recursive function
theory involving p r o g r a m s of only the simplest arithmetic operations.

We show first how Turing machines can be regarded as programmed
computers. Then by defining a hierarchy of programs which perform
certain arithmetic transformations, we obtain the representation in terms
of the restricted two-tape machines. These machines, in turn, can be rep-
resented in terms of Post normal canonical systems in such a way that
each i n s t r u c t i o n for the machine corresponds to a set of productions in
a system which has the monogenic property (for each string in the Post
system just one production can operate). This settles the questions raised

* The work reported in this paper was performed at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology, under Contract AF 19(604)-
5200.

437

438 MARVIN L. MINSKY

by Post [I], since the productions obtained satisfy the "Tag" condition
proposed in that paper.

Examination of the 2-tape non-writing machines was suggested by some
work of Rabin and Scott [2] who showed the undecidability of a certain
problem concerning finite automata with two tapes. It was suggested to
us by John McCarthy that this might have some explanation simpler than
that in the proof of the Rabin-Scott theorem, and he conjectured that a
non-writing machine with some small number of tapes might be equiv-
alent to a universal Turing machine. This proved correct, and we were
able to establish the result first in a four-tape machine which used the
basic arithmetic device of the present paper. Then, two of the tapes were
eliminated by the prime-factor method used for Theorem I. (As a re-
sult we obtain the Rabin-Scott theorem as an immediate corollary of
the unsolvability of a halting problem for Turing machines. In addition,
we obtain easily Wang's result that one can construct essentially univer-
sal Turing machines which can write but not erase; and we obtain also a
rather startling bound on the number of symbols needed on a Turing ma-
chine tape during a general computation. Three symbols are necessary,
and no more.) We then proceeded to represent the two-tape machine as a
Post normal system with the object of obtaining particularly simple un-
solvable decision problems (which will be described elsewhere). On the
suggestion of Martin Davis we examined Post's problem of "Tag". It
proved possible to adapt the Post system to yield a representation in the
"Tag" form as described in 92 below.

1. Two-tape non-writing Turing machines

We will first consider 2-tape non-writing machines each of which is
composed of

(i) a finite automaton, and
(ii) two semi-infinite tapes, each of which is completely blank except

for a single mark indicating the location of the square a t the end of the
tape.
These machines can move either tape in either direction, and can sense
when a tape reaches its end. Our task is to show that , given an ordinary
Turing machine T, we can construct a two-tape machine T * which is, in
a sense described below, equivalent to T. (The 2-tape machines, regarded
as programmed computers, are described more precisely in 3 1.3 below.)

1.1. Turing machines as programmed computers. Suppose that T'
is the Turing machine to be represented. Let T be the equivalent 2-sym-

439 RECURSIVE UNSOLVABILITY

bol Turing machine as obtained by Shannon [4]. This is non-essential
here, but simplifies details of the arguments. We can think of a Turing
machine as a formal system (e.g., Davis [6, p. 88 ff.]) or as a programmed
computer (e.g., Wang [5]). Here we prefer the latter.

A program is a sequence of Instructions, I,, each of which specifies
(i) an operation to be performed, and
(ii) the next instruction to be executed.

The "transfer" (ii) may be conditional on the outcome of (i) as in Rqi below.
The transfer (ii) is ordinarily specified by an expression go to I , , but when
(for brevity) no such expression appears, i t is understood that (ii) is to be
the next instruction in the program sequence. Execution of a program
ordinarily begins with obeying the first instruction.

Now suppose that the formal quintuples for the machine T are

where the q's represent states, the s's represent symbols (0 or 1) and the
d ' s represent directions of tape motion (left or right). Using these quin-
tuples (or rather, their index functions) we can represent each state qi of
T by a sequence (sub-routine) of five instructions:

RQi: Read the tape. If the current symbol is 0, go to Wio.
If the current symbol is 1 , go to Wi,.

Wio: Write sio in the current square. Go to Mi,.
Mi,: Move in direction d,,. Go to R,,,.
Wil: Write si, in the current square. Go to Mil.
Mi,: Move in direction d,,. Go to RqL1.

I f , for some i and j there is no quintuple qis5:, we can make Wi5 a Halt
instruction which terminates a program execution. This computer pro-
gram embodies very smoothly the usual mechanical interpretation of the
Turing quintuples.

For each instruction of T ' s program, the 2-tape non-writing machine
T * will have a corresponding set of instructions, and whenever T executes
a n instruction, T * will execute instructions in the corresponding set. The
complete state of T is described, after each instruction, by

(1) the entire contents of its tape,
(2) the location of its reading head on its tape, and
(3) its internal state as given by the index of its next instruction.

We describe in the next section how (1)and (2) are represented in the
machine T*; (3) is represented in T * as in T by the index of the next
instruction. We will refer to T 's tape as the T-tape and the tapes of T *
a s the T,*-tape and the T,*-tape. All three tapes are semi-infinite with

--

440 MARVIN L. MINSKY

ends to the left. Counting from the left we can refer to the nth square of
a tape, and we will use the symbol x to denote the current square of t h e
T-tape. It is convenient to assume that the extreme left-hand square of
each tape contains a special symbol: in the case of T, encountering this
symbol (on the -1" square) should correspond to a Halt or undefined re-
sult; in the case of T * encountering such a mark (on a 0" square) wilI
affect the choice of T *'s next instruction.

1.2. Representation of the Turing machine T as a two-tape non-writ-
ing machine T*. At any moment in the operation of T, the T-tape
contains a finite amount of written data, all of which may be represented
by the single integer k whose binary expansion is precisely the contents
of the T-tape up to the 1furthest to the right. The Oth square of the tape
is taken to contain the least significant digit of k. Then the content of
the current square, x, is always equal to the xth digit of the binary ex-
pansion of k. (Note: if k = Cr=,a,2"hen a , is the ithdigit of k.)

At the beginning of each instruction of T, the state of affairs of T *
will be represented in the following manner, suggestive of a Gijdel-num-
bering. Tape T,* will be set a t i t s end. Tape T: will be moved so that
i t s reading head i s 1 2'3'' I squares to the right of i t s end. After each
read, write, or move instruction of T, we will find that this condition of
the machine T * will be restored, except for the appropriate changes in k
and x. The meaning of the number 2'3" will become clear as we pro-
ceed; we note only that we could use any other pair of prime numbers
for '2' and '3'.

Execution of the instructions RgL, W2,and M,, require T * to manipulate
the length of T: so as to change properly the exponents of 2 and 3 in its
prime factorization.

(1) Moving the T-tape; the Minstructions. Moving the T-tape to the
right is equivalent to changing x to x + 1; i.e., to changing 2'3'" to 2"3""+'.
This means that tape T: must be moved to the right so that the number
of 3's i n i t s prime factorization will be doubled. We will do this by an
iterative method in which 2'3'" is converted first to 2'5'" and then to
2'9'" = 2'3'"-'. The first step will be accomplished by a program C(3, 5)
which will

(i) divide the length of the T: tape by 3; then
(i i) multiply its length by 5, and repeat this cyclically until step (i)

fails because the length is no longer divisible by 3.
The second step is accomplished by a similar program C(5, 9) which con-
verts all 5-terms in the factorization of the length of T: into 9=3'-terms.
We will describe in detail the program for C(S, T) in 3 1.3; we must have

RECURSIVE UNSOLVABILITY

g.c.d. (S, T) = 1. We represent this process as:

Similarly, moving the T-tape to the left will be represented by the
operations:

2k3" -'('32252"-1 C(53, ,2"~"-1

(2) Writing o n the T-tape; the W instructions. If the xthdigit of k
is a 0 and we wish to convert i t to a 1,this is equivalent to adding 2" to
.k, and can be done with the same C(S, T) operations:

.If we wish to replace a 1by a zero, the process is reversed, applying first
C(6, 5) and then C(5, 3):

(3) Reading the T-tape; the R, instructions. This is the key operation.
We have to determine whether the xthdigit of k is 0 or 1. Our method
is to carry out repeated subtraction of 2" from k, until k is exhausted.
We keep track of the parity of the number of times the subtraction was
completed, and if this parity is even, then x must have been 0; if odd, x
was 1. (Higher digits of k cause even numbers of subtractions, and lower
digits affect only the remainder.) The first step in the method is to make
a copy of k so that , when the process is complete, we will be able to re-
.store the T-tape. We will work with the exponent of 5:

We then repeatedly perform a process like that in (2) above:

checking a t each step to see whether the subtraction was completed (i.e.,
whether there remain both 3's and 7's), and keeping track of the parity
(i.e., whether the last operation was a C(35, 3) operation or a C(15, 7)
operation). When the process terminates, the original tape will be re-
stored by a single C(7,3) operation.

This completes the description of the required exponent arithmetic. I t
remains to show that all these operations can be realized in a program
built up from the basic operations available to T*. We describe first pro-

442 MARVIN L. MINSKY

grams for certain operations MPY(T) and DIV(S) which respectively
multiply the length of Tf by an integer T, or divide i t by an integer S.
These operations are essential also in our proof of the Post result. Then,
using MPY(T) and DIV(S), we show how to construct the program for
C(S, T) used above. Finally, we show how copies of these programs a re
linked together to form the complete program for T*.

1.3. The programs (sub-routines) for MPY and DIV. We first define
the instructions for the machine T*. There are four possible forms:

R,: Move T: to the right. Go to I, .
R,: Move T: to the right. Go to I, .
L,: Move T: to the left. If tape ends, go to I,, .

If not, go to I,, .
L,: Move T: to the left. If tape ends, go to I,, .

If not, go to I,, .
Thus on moving a tape to the left, the machine may encounter the ter-

minal square, and can use that information to affect the choice of its next
instruction. This cannot happen, of course, in moving to the right. (We
assume that the machine actually moves onto the terminal square when
i t encounters a left end.)

The program for "MPY(T). Go to I," is:

R*.

(1) 	 L,. If tape ends go to (2). ---+ (2) R,.
L,. 	 If tape ends, go to I, .

If not, go to (2) .

R,. 	Go to (1) .

The first part of the program moves the T,*-tape T squares to the right
for each motion of T: to the left. The second part of the program trans-
fers the multiplied tape length back to T:. Whenever, in the programs
below, we see the symbol MPY(T), i t is understood that a copy of the
above program is to be inserted there, with appropriate substitution for
the instruction names '(1)' and '(2)'.

The program for DIV(S) is complicated by the requirement that if the

RECURSIVE UNSOLVABILITY 443

length of T: is not exactly divisible by S i t should be restored to its orig-
inal length before leaving the program; while, if the length is divisible
by S , i t should be so divided. The specification of the next instruction is
conditional on which of these events occurs.

"DIV(S). If possible, go to I*,.If not, go to I*,":

R,.
(1) L,. If tape ends go to (S). , 4 2) 81.

L,. If tapc ends go to (S - 1). '\,//' (3) R,.
... / \ , \ ...

',
L,. If tape ends go to (2). A' *S) RI.

L,. If tape ends go to (E) . L,. If tape ends go to I,,.
R,. Go to (1). R,. Go to (2) .

(E) R,.
L,. If tape ends, go to I,,

If not, go to (E).

If division is exact, the program executes the iteration under (E)and
goes on to IwI.If not, the operations (2), ...,(S) restore the remainder,
and then the original length of T:, and the program goes on with the
instruction Im2.

Next we assemble the programs for the operations C(S, T) which re-
place all factors of S in the length of T: by factors of T, (where S and
T have no common factors). I t is important for the solution of the Post
problem that we write a program for C(S, T) using only MPY and DIV

sub-programs with prime parameters. Suppose that S = pilpi2...pimand
T = pj1pj2-.pjn where no p, is one of the pi's. Then we can write

"C(S, T)" - (1) D I V (~ ~ ,) .If no division go to I*,.
DIV(~,,).If no division go to (m).
... ...
D I V (~ ~ ~) .If no division go to (2) .
MPY(P,,).

MPY(P,,).
...

MARVIN L. MINSKY

(m) M P Y (~ ~ ~) .GO to Ial.

We can now write the instructions for the program of the equivalent
machine T *:

If d,, = "LEFT" -d,, = "RIGHT"

lzl-- C(9,5).' 1-Mi, 1 - C(3, 5).

C(5, 3). Go to R,,,. C(5, 9). Go to R,,, .

then: = Go to 1 1x1= Go to 1 = C(3, 5). -
Mi0 Mil C(5, 6).

That is, if no change in a symbol is required, no program is required.

Finally = c(2,35)-
C(7, 2)

(I:) C(15,7)
DIV(~) .If no division go to (I:').
MPY(~) .

C(7, 3). Go to Wi0.

(I:') C(35, 3).
D I V (~) .If no division go to (I,').

M P Y (~)
C(7, 3). Go to Wi,.

Note how the parity of the number of subtractions determines the choice
of the next instruction W,,. This completes construction of the program
for the machine T*,and hence the proof of

THEOREMI. T * represents the machine T (and accordingly, the ma-
chine Tr) i n the following sense. Suppose that the machine T i s started
i n state q, a t the xth square of i t s tape and with the binary number k
written on i t s tape. Suppose also that the machine T * i s started a t in-
struction R,,with i t s tape T:' a t i t s 2k32"'h square (and i t s tape T," a t
i t s end square). Then if T ultimately halts on i t s yth square with the

1 At this point one could test to see if the machine T has tried, illegally, to pass
the left end of its tape, and if so, halt the machine T*.

RECURSIVE UNSOLVABILITY 445

binary number N on i ts tape, T * will ultimately halt with tape TT a t
i t s 2N3'ytbsquare. If T i s a universal machine, then so will be T*, with
computations understood i n the above sense.

We could, if desired, remove the exponent of 3 in the terminal result
by replacing each Halt instruction by the program [C(3, 1). Halt.]. No
way, however, is seen to replace the terminal number 2N by the number
N, or to perform the inverse operation. (This can, however, be done when
we represent.the machine T * by a Post normal system.)

2. Monogenic normal systems

2.0. The problem of "Tag". Let A be a finite alphabet of letters
a,, . .,a,; and let W be an associated set of words: for each i , Wi is
some fixed string or word of letters of A. Let P be some integer, and
consider the following process applied to some initially given string S of
the letters: Examine the first letter of the str ing S. If i t i s ai then

(i) remove from S the first P letters, and
(ii) attach to i t s end the word Wi.

Perform the same operation on the resulting string, and repeat the
process so long a s the resulting s t r ing has P or more letters. The "Tag
problem", for given A, P , and W is to give a decision procedure which,
given S, will tell if the process will ever terminate. A second problem,
given A, P , W, and Sis to decide, for any string S', whether that s t r ing
will occur dur ing the process.

One can think of this as a process in which one end of the string, ad-
vancing a t a constant rate, is trying to catch up with the other end of the
string. The problem is significantly different from the usual word prob-
lems in that the process considered is monogenic (each string can be re-
placed by just one other string), and one might suppose that this would
make it easier to decide such problems. However, our result is that there
are problems of both kinds which cannot be decided, (with P = 6).

2.1. Recursive unsolvability of the Post "Tag" systems. The "Tag"
systems which concerned Post are normal (canonical) systems with the
following constraint on the constants in the productions. In a normal
system, all productions have the form

where g, and hi are fixed strings of letters of some alphabet and a is an
arbitrary string. The special constraint is that

(1) a l l the g, have the same length P , and
(2) the str ing hi depends only on the first letter i n the str ing gi.

446 MARVIN L. MINSKY

We will show (Theorem 11) that any Turing machine can be represented,
in a simple sense, as a "Tag" system, obtaining the unsolvability of the
"Tag7' problems for those systems representing, say, universal Turing
machines. Incidentally, we obtain an independent proof of the basic Post
theorem on the universality of normal canonical systems, and obtain a
positive answer to his question of whether monogenic normal systems
can be universal.

Consider a Turing machine T' to be represented. I t follows from the
proof of Theorem I that the equivalent 2-symbol machine T can be repre-
sented by a 2-tape non-writing machine with a program of the form
I,,. . .,I,,where each instruction has one of the two forms:

(1) (I,) MPY(K,). GO to 1,'
or

(2) (I,) D I (K) If division is even go to I,,. If not go to I,, .
In each case, K, is one of the four primes 2 ,3 , 5 , 7 used in the above
proof. We have to show how an arbitrary program composed of instruc-
tions of these two types can be represented by a Post Normal System with
the given constraints on the string constants giand hi.

To represent such a program, we introduce a set of distinct symbols
and productions for each of the instructions. In each production ga-ah
the antecedent string g will have precisely Ple t ters (where P=2.3.5.7=
210), meeting Post's "Tag" condition.' If the jthinstruction is MPY(K,),
we will use P + 3 letters A,, a,, B,,, B,,, .. . ,Bjp, b,. The state of the
program a t the start of the instruction I, will be represented by the ex-
istence of a string of the form A,ay and the productions below will con-
vert this to a string of the form A,,a3;.1 . (Since the consequent h of
each production depends only on the first letter of the antecedent g, we
will write only that letter on the left, it being understood that P letters
are to be removed from the beginning of the string in each case.)

I, = MPY (W,):

If n = aP f 6 , (p < P) we can trace the generation of strings:'

In 53 we show P can be reduced to 2.3 = 6.
2 The idea of this multiplication process is based on discussion with R. Silver.

RECURSIVE UNSOLVABILITY

For division we use the productions:

Let n = aP + BK, + Y with P < PIK, and Y < K,. Then
: a - i) p + @ ~ ~ i - y + l

A,ag -ay-P-1B,1B,2...B,, = aj Bjl-..B,p
+afKa+~+lBj i ' Bfp(bll. bJp)"-l

+Bj(p-oKj-y)...Bjp(bjl...bjp)@.

Now if r = 0, this

Otherwise Y # 0, and

Hence if division is possible we obtain a string AjlagjK~,but if not, we ob-
tain a string A,2a52of the original length.

Observe that the symbol A, can be encountered as the first symbol in
a string o n l y when that string has the form A,a7, and that i t occurs as
the first symbol only in the first production of the instruction I,. The
productions of that instruction can yield precisely one new string begin-
ning with an A, hence the system has the monogen ic property: each string
can be transformed into precisely one new string by the entire system of

448 MARVIN L. MINSKY

productions. If we begin with, say, a string of the form ~ , a ~ ~ ~ " , the for-
mal system will represent, in its production of one string after another,
precisely the steps of the process carried out by the corresponding ma-
chine T*. This completes the proof of Theorem 11. Any Turing machine
has a representation as a monogenic "Tag" normal canonical system.

A few further remarks will help to expose the power, even with the
"Tag" condition, of monogenic normal systems.

2.2. A set Sof strings in an alphabet A has a normal extension C if the
set S is precisely the subset of strings in A produced by a normal system
C in some larger alphabet. (We do not require that the initial string or
axiom be a string in A.) We can show that any recursively enumerable
set of integers can be represented by a monogenic normal canonical ex-
tension over a 1-symbol alphabet. The proof is complicated by the fact
that , in a monogenic system, we cannot realize every recursive enumera-
tion procedure directly because a non-terminating process cannot be cir-
cumvented by generation of other trees of strings. We will only sketch
the method of proof.

Suppose that an infinite set J of integers is r.e. Choose a Turing ma-
chine TJ which somehow enumerates J without repetition. Construct a
larger Turing machine M J which can perform the operations of T J while
remembering (e.g., on a special part of its tape) an arbitrary integer, as
follows: Let J (n) be the nth integer in the given enumeration of J. Sup-
pose, inductively, that MJ has a record of J(n). Let MJ then proceed to
go through the operations of TJ, starting from the very beginning, and
let i t compare each integer generated with J(n). When T J generates
J(n), MJ allows TJ to generate the next value J (n + l) . At this point MJ
converts J (n + 1) into a string of the form OJ'""'l, beginning a t the left
end of its tape, erases everything else on its tape, and moves to the ex-
treme left, entering a special state q , (which is not entered in any other
case). The process is then repeated, storing and comparing the new value
J (n + 1). If we let the symbols A, and a,, in the corresponding monogenic
"Tag" system of Theorem I1 be the letters of a restricted alphabet A,,
then the only pure strings in this alphabet will be the strings A ~ a ' , 3 . " ~ ~ ' .
The factor 3 could be removed, if desired. A more elegant representation
can be obtained by adjoining productions which convert ~ , , a & . ~ ' ~ ' " ' into
Y J n1 and back to Aha? "'"', with YJ "' being the only pure strings in the

alphabet with just the letter Y. Prod~ctions have been found which thus
preserve the system as a monogenic normal extension over a one-letter
alphabet, but we have been unable to preserve also the "Tag" property.
The difficulty is in restoring the exponent. Perhaps this difficulty is re-

RECURSIVE UNSOLVABILITY 449

lated to that of going from exponential to polynomial diophantine equa-
tions?

2.3. Halting Problems. A "Tag" system halts when a string is produced
with length P. We can arrange that this will happen for some chosen
instruction I, by assigning to I , the productions

A, -H
a, -- H
H - - H .

We could also trap the system a t a special configuration of the Turing
Machine: If we introduce the prime 37 into our representation, using
strings of the form A,a,2K32".37,then (since 3 -37 <P<6-37)the machine
will stop if and only if it reaches the condition K = 0, x = 0. I t is easy
to express an unsolvable Turing Machine problem in this form: does the
machine ever erase its entire tape and return to the end square?

3. Recursive functions based on programs
of arithmetic instructions

The proofs of Theorems I and I1 show that recursive functions may be
calculated by programs of arithmetic operations on strings of symbols; in
particular, we may formulate these results so that the operations act es-
sentially only on the lengths of the strings. In the first case there are
two integers S, and S, involved:

THEOREMIa. We can represent any partial recursive function T(n)
by a program operating on two integers Sl and S, using instructions
I , of the forms

(i) ADD 1 to S j . GO to I,,.
(ii) SUBTRACT 1 from S,, if S , f 0, and go to I,I. Otherwise go to IjS.

That is , we can construct such a program with an I, and I, such that i f
we start at I, with S, = 2" and S, = 0, the program will eventually stop
at Iv with Sl = 2T(N'and Sz = 0.

THEOREMIIa. We can represent any partial recursive function T (n)
by a program operating on one integer S using instructions I, of the
forms

(i) MULTIPLY by K, and go to I,,.
(ii) DIVIDE by K j and go to I,,, if K,/S. Otherwise go to I,,.

In this system we can again start at In with S = 2" and halt at Iy with
S = 2T(").

The proof of Theorem I shows that the values of K, can be limited to

http:A,a,2K32".37

450 MARVIN L. MINSKY

any four distinct prime numbers; e.g., 2 , 3 , 5 , and 7, but we can remove
two of these as follows;

We apply the system Ia to the system IIa. Suppose that the integer S
in system IIa has the form 2"3". And suppose that m = S, and n = S, are
also the integers in a system Ia. Then there is an isomorphism between
the effects of the following instruction pairs:

Ia IIa

ADD 1to Sl

ADD 1to 8,

M P Y (~)

++~ p y (3)
SUBTRACT 1from S, D I V (~)
SUBTRACT 1from S, DIV(3) .

I t follows from the universality of the system Ia (or from the proof of
Theorem I) that the system IIa accordingly requires only two primes, e.g.,
2 and 3, for its instructions. We can apply this result directly to the proof
of Theorem I1 yielding the result that we can choose P=6 and still obtain
a universal "Tag" system. In this case the representation of the original
Turing machine involves an additional level of exponentiation, and we
must supply that system with strings of the lengths s = 2" to obtain
strings of length 22T'n'. I t may be possible to simplify this form further.
We have been unable to reduce P further, and the prospects seem gloomy.
(We have been unable, as was Post, to prove a negative result for
P = 2.)

I t would be desirable to reduce the exponentiation level in this repre-
sentation but the "Tag" systems seem intractible in regard to lower
level manipulations. We have been unable even to find productions which
can reduce the length n > P of a string to n - 1, for arbitrary n.

4. Corollaries

4.1. Unsolvability of certain 2-tape jinite automata problems. In [2]
Rabin and Scott show the unsolvability of the problem of the existence
of a pair of finite tapes which will cause a certain kind of non-writing
two-tape automaton to enter a certain state. I t is a consequence of our
Theorem I that such automata are equivalent to arbitrary Turing ma-
chines, and we can obtain the Rabin-Scott result directly from a halting
problem for a class of Turing machines. To see this, consider two-tape
machines like those of $ 1 with the additional ability to sense a certain
symbol 0.Let Vl, V,, . . .be two-tape machines with V, equivalent (in the
sense of Theorem I) to T, but with the modifications below:

(1) V, is to be presented with two finite tapes on which are printed

RECURSIVE UNSOLVABILITY 	 451

arbitrary sequences of symbols. Imagine that the reading heads of V, are
placed initially a t the right hand ends of these tapes. We assume that
t h e machine can sense

(i) the symbol 0 , and
(ii) when a tape has passed one of its ends (in which case that tape is

irretrievably lost).
(2) When actuated, Vj begins with the following program.

(1) 	L,. If symbol is not 0 , go to (1).
If symbol is 0 , go to (2).
If tape falls off, decision is NO.

(2) 	L,. If symbol is not 0 , go to (2).
If symbol is 0 , go to (3).
If tape falls off, decision is NO.

(3) R,. R,. R,. If tape falls off, decision is NO.

This means that the pair of tapes is to be rejected in the Rabin-Scott
sense unless there is a t least one 0 on each tape. At the completion of
this program, the machine has one head located a t the occurrence of 0
farthest to the right on tape 2, and the other head located three squares
t o the right of the rightmost 0 of tape 1. The remainder of the program
for V, is identical to that for the equivalent machine Tj* of Theorem I
except that

(i) wherever TT's program depends on the end-of-tape mark, V,'s pro-
gram depends on the occurrence of 0 ,

(i i) whenever Tj* has a program Halt, Vj has a YES decision, and
(iii) if a tape falls off V, i t makes a NO decision (unless i t has already

made a YES decision). A YES decision in the Rabin-Scott sense consists of
moving both tapes to the left until they fall off; a NO decision consists of
moving the remaining tape to the right until i t falls off.

A YES decision can occur only in the case that the corresponding ma-
chine T, reaches a programmed halt. The corresponding event can occur
for V,with a given pair of tapes if and only if

(i) T, eventually reaches a halt, and if
(i i) there is enough room to the right of the 0 ' s on the two tapes to

admit the representation of Ti's (finite) calculation.
Hence the problem of the existence of some pair of tapes which will be
accepted by V, is equivalent to the halting problem for the Turing machine
T,if that machine is started, with a blank tape, on its first square. (We
required motion of tape 1three squares to the right in instruction (3) above
so that Vi could start with the initial data n=2'3"=3.) Such a halting

452 MARVIN L. MINSKY

problem is known to be recursively unsolvable: e.g., for each Turing
machine T , there is another Turing machine TL, which halts, for any
initial tape, if and only if T,(n) halts.

4.2. Densities of symbols on Turing machine tapes. Application of
Theorem I to ordinary Turing machines yields: There exists a Universal
Turing Machine wi th the property that at no t ime in any calculation
wil l i t s tape contain more than three 1's with the remainder of the tape
blank. For three marks are sufficient to de-limit two intervals along the
tape, and then It is a simple matter to adapt the above techniques for
standard Turing machine. If desired, one of the three marks need never
be moved. This result is obtained by directly simulating the 2-tape ma-
chine with a Turing machine.

This result shows that it would be futile to t ry to find interesting theo-
rems relating classes of computations to the densities of data entries on
the tapes of the corresponding Turing machines, unless some novel re-
striction is placed on the machines.

4.3. Non-erasing Turing machines. In [5] Hao Wang shows that one
can make a Universal Turing machine which writes, but never erases or
changes a symbol that has been written. This is done by re-copying with
changes all the essential data, a t some distance along the tape, each time
a change would be required. Wang's construction is rather complicated,
and can be simplified in view of the fact that one needs to copy only three
symbols and the corresponding intervals. We begin by recoding our tape
in the form

-..(old data).. .a,O, 1,0, 1, 0, a . 0 b, 0, 1 , 0, 1 , 0, --• c , 0 .

The letters represent our three marks, the 1's represent the old blanks,
and the blanks in the odd-numbered squares will serve as markers for the
copy operation. Copying without any alterations is done as follows:

Begin with the a a t the left. Read and remember the current symbol;
move one unit to the right and write a 1. Then move right to the first
unoccupied odd square and there copy the stored symbol. Move left to the
first occupied even square; go right one square, and repeat the cycle un-
til the terminal symbol c has been copied. Finally return to the left until
an a is encountered.

In all this we have written only on previously blank squares. If the
copy is to involve an alteration, this will involve moving b or c or both t o
the right or left. The copying program will have to be modified to do this,
but the details are quite simple and will be omitted here. Finally the
above non-erasing machine could be converted into a 2-symbol machine

453 RECURSIVE UNSOLVABILITY

by, for example, using blocks of three squares and a representation

4.4. A s imple diophant ine predicate f o r prod@, x). The simple form
of the instructions for the machines of Theorem IIa yield some simplifica-
tions in the details of the theory of diophantine predicates (6). We have
not explored this thoroughly, but the argument below will show some of
the possibilities.

For each instruction I, of the system IIa, we will assign a distinct prime
P, (reserving the primes K, for other purposes). We will use these primes
to represent, in polynomial form, the $ow of the program. Consider the
polynomial equation

This will have exactly one integer solution given x, provided that P, / x,
in which case y is obtained from x by

(i) multiplying x by K,, and
(ii) removing a factor P, from x and replacing i t by a factor P,l.

We wish to restrict the existence of such a solution to the case in which
x contains just one of the factors P, (we do not mind if that factor is re-
peated). The following polynomial has that property, but requires an ex-
t ra variable. Let +, = H,,,P, and let

which will have just one solution provided that P, I x and no other Pi I x.
In this solution the extra variable t is bounded by x. Thus, (1) represents
the instruction

Similarly, if I, is an instruction "DIV(K,), Go to I j l ; otherwise Go to
Ij2"we can use the expression

which again will have a solution under the above conditions in which, if
K, 1 x,y will be obtained by dividing x by K, and replacing P, by P,l. In
the other case, P, is just replaced by Pj2.Now we can put all the poly-
nomials together by forming their product

454 	 MARVIN L. MINSKY

Now if this has a solution (and i t can have a t most one, for given x)
this is equivalent to the statement y i s a n immediate successor of x for a
sequence of numbers produced by the system IIa. Hence this is the equiv-
alent of Davis's predicate prod (x, y, 2; x', y', 2') but with a single bounded
existential quantifier with a peculiar unique solution property. It
seems likely that this possibly useful quantifier restriction could be ex-
tended by such methods to other quantifiers in the theory of diophantine
predicates.

The polynomial F(y, x, t) so obtained has the property that , for given
x there is a t most one pair (y, t) for which F(y , x, t)=O, and t is bounded
by x. We can obtain from this some rather simple kinds of unsolvable
problems. Choose an initial value x, for x. Obtain (at most one) solution
for y and call i t x,. Substituting x, for x we obtain a new value for y,
called x,. The sequence so obtained may be infinite or i t may terminate.
Now we can, by appropriate Turing machine techniques, obtain such poly-
nomials F(y , x, t) for which the following problems are recursively un-
solvable:

1. GIVEN 2, to decide whether an arbitrary x' will occur in the se-
quence.

2. To decide whether an arbitrary x yields an infinite sequence.
3. To decide whether an arbitrary x yields a periodic sequence.

And so on. The construction of such problems is straightforward, in that
there is a direct translation from well-known equivalent Turing machine
problems. (By solution we mean, of course, solution in non-negative inte-
gers.) Similar unsolvable problems are known, of course, but not (to my
knowledge) with the unique solution property, or with so few as just one
extra variable. The degree of such polynomials, as obtained by our con-
structions, are unfortunately too large to be of practical interest. Care-
ful construction might yield degrees of, perhaps, several h ~ n d r e d . ~

1. 	E. POST, Formal reductions o f the combinatorial decision problem, Amer. J . Math.,
65 (1943), 196-215.

2. M. 	0. RABIN and D. SCOTT,Finite automata and their decision problems, IBM Jour-
nal of Res. and Devel. 3, no. 2, April, 1959. (Our Cor. 4.1 is the final Theorem
19 of this paper.)

3. 	A. M. TURING, On computable numbers, etc., Proc. London Math. Soc., Ser. 2, 42 (1936)
and 43 (1937).

3 Note added in proof.
We have obtained, by use of Theorem 11, a Universal Turing Machine with only 6-

symbols and 6-states.

455 RECURSIVE UNSOLVABILITY

4. 	C. E. SHANNON,A universal Tur ing machine with two internal states, Automata S tu -
dies, Princeton, 1956.

5. H. WANG, A variant of Tur ing ' s theory of computing machines, J . Assoc. Comput-
ing Machinery, Jan. 1957.

6. 	M. DAVIS, Computability and Unsolvability, McGraw-Hill 1958. (Our predicate
Prod(y, x j is equivalent to Davis's Prod(x, y, z; x', y ' , z' j as used in the proof of
his Theorem 3.1, pp. 108-111.)

