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Overview

• Fibonacci, Kronecker and Hilbert ???

• Logic and Decidability

• Additive Cellular Automata

• A Knuth Question

• Some Questions
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Hilbert
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Entscheidungsproblem

The Entscheidungsproblem is solved when one knows a procedure
by which one can decide in a finite number of operations whether a
given logical expression is generally valid or is satisfiable. The solution
of the Entscheidungsproblem is of fundamental importance for the
theory of all fields, the theorems of which are at all capable of logical
development from finitely many axioms.

D. Hilbert, W. Ackermann
Grundzüge der theoretischen Logik, 1928
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Model Checking

The Entscheidungsproblem for the 21. Century.

Shift to computer science, even commercial applications.

Fix some suitable logic L and collection of structures A.

Find efficient algorithms to determine

A |= ϕ

for any structure A ∈ A and sentence ϕ in L.

Variants: fix ϕ, fix A.
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CA as Structures

Discrete dynamical systems, minimalist description:

Aρ = 〈C,�〉

where C ⊆ ΣZ is the space of configurations of the system and � is the
“next configuration” relation induced by the local map ρ.

Use standard first order logic (either relational or functional) to describe
properties of the system.
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Some Formulae

∀x∃ y (y � x)

∀x, y, z (x � z ∧ y � z ⇒ x = y)

∀x∃ y, z (y � x ∧ z � x ∧ ∀u (u � x ⇒ u = y ∨ u = z))

There is no computability requirement for configurations, in x � y both x
and y may be complicated.
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∞-Automata

Express x � y in terms of finite state machines on infinite words, ditto for
equality.

0
0

0
1

1
0

1
1

Local map ρ(x, y, z) = y ⊕ z.
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Automata to Logic

These are essentially Büchi automata.

Much like ordinary FSMs, but the acceptance condition involve infinitary
quantifiers.

The emptiness problem for these automata is easily decidable.

Regular languages on infinite words are closed under union, complementation
and projection, corresponding operations on automata are effective.

Theorem. Model checking is decidable in this case.
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Comments

• Amoroso and Patt 1972: decidability of reversibility and surjectivity using
a combinatorial argument.

• KS 1991: efficient quadratic time algorithm.

• J. Kari 1990: undecidable in dimensions 2 and higher.
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Orbits

Unfortunately, the reachability relation

x
∗→ y

is undecidable, even in dimension 1. So for any logic strong enough to
express orbits (MSO, TrCl, . . . ) model checking is undecidable.

Stronger classifications are even more hopeless. E.g.

• decidability of orbits is Σ3-complete,

• computationally universality is Σ4-complete.
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Scaling Back

How about considering only finite grids?

Then reachability
x
∗→ y

is PSPACE-complete.

Caution, though: uniform problems may still be undecidable. E.g.

∀x∃ z (x ∗→ z ∧ z � z)

is Π1-complete.
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Fibonacci and Kronecker
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Additive CA

Scale back much further: consider only additive local rules on finite grids.

For simplicity consider only F2.

Generalize the classical elementary CA 150 and 90.
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σ-Automata

Let G = 〈V,E〉 be some locally finite undirected graph, C = V → 2 the
space of all configurations over G.

σ : C −→ C

σ(X)(v) =
∑

u∈N(v)

X(u) mod 2.

where N(v) is the closed neighborhood of v (including v). Open neighbor-
hood: σ−.
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Boring

In a sense, these CA are boring (predictable): for n cells we can determine
the state of a cell at time t in

O(n3 log t)

steps, so we are far from usual PSPACE-completeness.

But not too boring . . .



NKS’07 16

Not Too Boring

Finding predecessors is just linear algebra over F2, can be done in time
polynomial in n = |V |.

Theorem. Existence of a predecessor of bounded cardinality over F2 is
NP-complete.

Let M = 〈a, a2 = a3〉 (three element abelian monoid {0, 1, a}).

Theorem. Existence of a predecessor over M is NP-complete.
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Transition Diagram

We want a computationally simple description of the transition diagram, or
pattern space

〈C, σ〉 where C = V → 2

Fitting-decomposition:

C = K ⊕ E

where K is the nilpotent part and E the regular part (with respect to linear
operator σ).
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Transition Diagram
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Fibonacci

Define the binary Fibonacci polynomials over F2[x] as follows:

π0(x) = 0,

π1(x) = 1,

πn(x) = x · πn−1(x) + πn−2(x).

For example, π111(x) has the form

1+x8+x12+x14+x16+x64+x72+x76+x78+x80+x96+x104+x108+x110
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Coefficients of Fibonacci Polynomials
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Minimal Polynomials for Dim 1

For one-dimensional paths Pn we can determine the minimal polynomials.

Theorem. The minimal polynomial of σ− on a path of length n is πn+1(x).
For cyclic boundary condition we have

√

xπn(x) for even n, and x
√

πn(x)
for odd n.

The minimal polynomials for σ are then πn+1(x+ 1) and so forth.

Note that x 7→ x+1 is an involution of F2[x], so the multiplicative structure
of the Fibonacci polynomials is preserved.
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Higher Dimensions

How about grid graphs Pn,m, with pattern space

〈C, σ〉 where C = [n]× [m]→ 2

For simplicity, focus on just one question:

I How hard is it to check reversibility on an n by m grid?
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Kronecker

The matrix representation of σ is a Kronecker matrix, the adjacency matrix
of the grid graph, plus the diagonal.

So we need to compute the nullspace of this matrix.
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Reversibility
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Reversibility with σ−
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Divisibility

Much better: the dimension of the kernel of σ− on Pn,m is just

gcd(n+ 1,m+ 1)− 1.

For σ− simple divisibility of integers is insufficient.

The necessary computations can be handled in time polynomial in log nm.

So reversibility here is easy even given a succinct representation.

How much more difficult can σ = σ− + I be?
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Characterizing Reversibility

Theorem. The dimension of the kernel of σ on Pn,m is

deg gcd(πn+1(x), πm+1(x+ 1) ).

Note the involution x 7→ x+ 1.

Again a divisibility problem, but time polynomial in log nm no longer
suffices.

But perhaps we can analyze the divisibility properties of the binary Fibonacci
polynomials to find a computational shortcut?

The involution preserves irreducibles, so a factorization would be useful.
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Rank of Apparition

Every irreducible polynomial τ divides some πn so so there is a notion of
rank of apparition:

rap(τ) = min
(

k | τ divides πk
)

Dates back at least to work by M.Ward and L.K.Durst, Lucas-Lehmer Test.
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Factorization

Theorem. Let n = 2k ·m, m odd. Then

πn(x) = x2k−1
∏

d|m

ρ2k

d (x) = x2k−1
∏

d|m

ρd(x2k)

Here the ρd(x) are (squares of) products of irreducibles of rank d.

For odd n we have

πn(x) =
∏

d|n

ρd(x)
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The Source of All Evil

. . . is the involution x 7→ x+ 1.

πn(x) = . . . τ(x) . . .

πn(x+ 1) = . . . τ(x+ 1) . . .

Clearly τ(x+ 1) is again irreducible and has the same degree as τ(x).

But what happens to the rank of apparition of τ(x+ 1)?
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Pinning Down Rank

Little can be said about the rank of τ .

Theorem. Let τ ∈ F2[x] be an irreducible polynomial of degree d and k
its rank of apparition. Then k divides 2d − 1 if, and only if, the linear term
in τ vanishes, and 2d + 1 otherwise.

In either case, d is the suborder of 2 in the multiplicative group Z∗k.
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Changing Rank

255

257

51

85
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Application: Reversibility Test

Theorem. For any fixed m ≥ 1 there are positive integers t1, . . . , tr such
that rule σ on Pn,m is reversible if, and only if, none of the ti divides n+ 1.

The test can be handled in time polynomial in log n, but computation of
the ti appears to require

• the factorization of πm+1(x),

• computation of the rank of apparition of the corresponding irreducible
factors.
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Application: Total Irreversibility

The dimension of the kernel of σ on Pn,m is at most min(n,m). Call the
automaton totally irreversible if it attains this bound.

Theorem. P. Sarkar

n = 4 is the only totally irreversible square.

Proof quite hard.
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A Knuth Question
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Kernel Patterns

From 5× 3 to 11× 23.



NKS’07 37

A Multiplicative Sequence

For simplicity consider only irreversible squares:

Irr = {n | gcd(πn(x), πn(x+ 1)) 6= 1 }

so that the first few terms of Irr are

5, 6, 10, 12, 15, 17, 18, 20, 24, 25, 30, 31, 33, 34, 35, 36, 40, 42, 45, 48, 50, 51, . . .

The sequence is multiplicatively closed, so the question arises: what are the
generators:

5, 6, 17, 31, 33, 63, 127, 129, 171, 257, 511, 683, 2047, 2731, 2979, 3277, . . .
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Not Finitely Generated

Theorem. The sequence Irr is not finitely generated.

n ∈ Irr iff for some irreducible τ1, τ2 factors of πn: τ1(x) = τ2(x+ 1).

Sketch of proof:

Focus on τ(x) = τ(x+ 1): translation invariant irreducible polynomial.

So we only need to find lots of TIPs.
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TIPs

The number of TIPS of degree d is 2d/2+1 for even d, and 0 otherwise.

Consider the invariant

̂f(x) = f(x(x+ 1))

Lemma. Let f be irreducible of degree d.

Then either ̂f is TIP or ̂f(x) = f1(x) f2(x) where the fi’s are TIP.

Moreover, ̂f is TIP iff [xd−1] ̂f = 1.
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Counting Irreducibles

Building on work by Niederreiter one can count irreducible polynomials of
degree d with fixed coefficients c1 and cd−1.

Let ω1/2 = (−1± i
√

7)/2 be the two complex roots of x2 − x+ 2 = 0.

Lemma. Let k ≥ 4 and write k = k0k1 where k0 is a power of 2 and k1 is
odd.

Nab
k =

1
4k

∑

d | k

µ(k1/d)
(

2k0d + (−1)a+b(1− ωn0d
1 − ωn0d

2 )−

[a = b = 0, k1 = 1] 4 · 2n0/2d
)
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Infinitely Many Generators

For any odd prime k there is a TIP gk of degree 2k whose rank of apparition
divides 22k − 1.

But then there cannot be finitely many generators:

d | gcd(rap gk1, rap gk2) | gcd(22k1 − 1, 22k2 − 1) = 3.
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Pinning Down Rank

Lemma. Let d = sordn(2) where n > 2. Then the number of irreducible
polynomials of degree d and rank of apparition n is ϕ(n)/2d.

Main idea: attack Fibonacci polynomials via bivariate cyclotomic polynomi-
als

Φn(x, y) = Πk |n(xk + yk)µ(n/k)

More precisely, express the critical factor ρn in terms of symmetric reducts
of Φn:

ρ2
n = SR(Φn(x, y))

∣

∣

y=1
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Questions
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Logic

• What is the complexity of model checking for CA with FOL?

• Is there any interesting logic L with decidable model checking for one-
dimensional CA?

• How about subclasses of CA?

• How about finite CA (finite grids)?

• Is the theory of Wolfram Class III the same as Class IV?
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Additive Automata

• Understand the rank of apparition of τ(x+ 1).

• Is reversibility testing for two-dimensional σ-automata polynomial in
log nm?

• Pin down the complexity of analyzing reversibility for algebraic dynamical
systems.

• Pin down the complexity of analyzing the transition diagram for algebraic
dynamical systems.


