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Small-scale physics is probabilistic/statistical.

In the presence of significant thermal or quantum
fluctuations, a probabilistic approach is needed.

NKS Chapter 6 looks for patterns in the evolution
of randomly chosen single instances of an
underlying system.
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A random field is an indexed set of random variables.
A lattice as an index set is appropriate for a
probabilistic approach to finite automata.

A random field deals with evolution of probabilities directly,
instead of with an underlying classical evolution.

The NKS community does not make enough contact with
the Bell inequalities argument, which is probabilistic.

Some of the resistance of the Physics community to NKS
is because finite automata appear to satisfy the
assumptions required to derive Bell inequalities.

Three necessities:

• an NKS approach must have a non-trivial concept of
a particle that is not point-like.

• an NKS approach must have a contextual measure-
ment model (best to model experiments instead of
measurements).

• an NKS approach must model quantum and thermal
fluctuations.
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Quantum fluctuations for the Klein-Gordon field

The Klein-Gordon field is differentiable and satisfies the
differential equation ∂2φ

∂t2
− ∂2φ

∂x2
− ∂2φ

∂y2
− ∂2φ

∂z2
+ m2φ = 0.

My work is with continuous random fields, which are
closely related to quantum fields (not with an
infinitesimal lattice as index set, but sort of).

There is a quantized Klein-Gordon field, and there is also
a classical Klein-Gordon random field.

A continuous random field is not a continuous field, there
is a probabilistic fractal structure all the way down.

I have no ontological commitment to continuity.
Continuity is just mathematically useful.

For the Klein-Gordon random field, interactions and
renormalization are not dealt with (so physicists are
not much impressed).
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The Gibbs probability density for the equilibrium
state of the classical Klein-Gordon random field at
temperature T :

ρC[Φt]
N= e−βH[Φt]

= exp

− 1

kBT

∫
Φ̃∗

t (k)1
2

(
k2 + m2

)
Φ̃t(k)

d3k

(2π)3



The probability density for the vacuum state of the
quantized Klein-Gordon field (on any hyperplane):

ρ0[Φt]
N= exp

−1

h̄

∫
Φ̃∗

t (k)
√

k2 + m2 Φ̃t(k)
d3k

(2π)3



Four changes to obtain the quantum case:

• there’s a square root;

• kBT becomes Planck’s constant (with action units
instead of energy units);

• the Lorentz symmetry (the classical Klein-Gordon
dynamics is Lorentz invariant, but the Gibbs proba-
bility density as an initial condition is not).

• there is also a restriction to positive frequency in the
quantum vacuum state.
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Presentation note
N over = denotes equality up to(infinite) normalization.



The Gibbs probability density for the equilibrium
state of the classical Klein-Gordon random field at
temperature T :

ρC[Φt]
N= e−βH[Φt]

= exp

− 1

kBT

∫
Φ̃∗

t (k)1
2

(
k2 + m2

)
Φ̃t(k)

d3k

(2π)3



The probability density for the vacuum state of the
quantized Klein-Gordon field (on any hyperplane):

ρ0[Φt]
N= exp

−1

h̄

∫
Φ̃∗

t (k)
√

k2 + m2 Φ̃t(k)
d3k

(2π)3



The equilibrium state probability density of the
quantized Klein-Gordon field at temperature T :

ρT [Φt]
N=

exp

−1

h̄

∫
tanh

h̄
√

k2 + m2

2kBT

 Φ̃∗
t (k)

√
k2 + m2 Φ̃t(k)

d3k

(2π)3



There is a difference between quantum fluctuations and
thermal fluctuations, and this is the best characteri-
zation of what the difference is (that I know of).
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Bell inequalities for random fields

Bell inequalities can be derived for non-contextual
particle property models.

Bell inequalities cannot be derived for random fields
that have thermal or quantum fluctuations.

I argue this at length in J. Phys.A39 (2006) 7441-7455.

We can use four random variables to model an experiment
that violates a Bell inequality:

sA and A are measurement settings and measurement
results associated with a space-time region A.

sB and B are measurement settings and measurement
results associated with a space-time region B.

A
sA, A

B
sB, B

In fact, we only have statistics, but we take probabilities to
be good models for statistics.
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time t1 t2 t2 +ε t3 t4 t5 · · ·
place A A B A B B · · ·
measurement
setting sA or sB

a2 a1 b2 a1 b2 b1 · · ·
measurement
result A or B + − + + − + · · ·

The experimental data we have is a list of events: the times
and places at which the events happened, the settings,
and the results.

In general we have control neither of when measurement
events happen nor of the measurement settings.

This is still idealized, but less so than a probability distri-
bution.
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time t1 t2 t2 +ε t3 t4 t5 · · ·
place A A B A B B · · ·
measurement
setting sA or sB

a2 a1 b2 a1 b2 b1 · · ·
measurement
result A or B + − + + − + · · ·

The source sends pairs of “photons”, one in each direction.

Each photon encounters a two-channel polariser whose ori-
entation (sA = a1 or a2) can be set by the experimenter.

Signals from each channel are detected and coincidences of
four types (++, −−, +− and −+) are counted.
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time t1 t2 t2 +ε t3 t4 t5 · · ·
place A A B A B B · · ·
measurement
setting sA or sB

a2 a1 b2 a1 b2 b1 · · ·
measurement
result A or B + − + + − + · · ·

t1 A1

t2 A2
t2 +ε B2′

t3 A3

t4 B4

t5 B5

t6 A6

t7 A7
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time t1 t2 t2 +ε t3 t4 t5 · · ·
place A A B A B B · · ·
measurement
setting sA or sB

a2 a1 b2 a1 b2 b1 · · ·
measurement
result A or B + − + + − + · · ·

We find pairs of events at nearly matching times in regions
A and B, to construct a list of “simultaneous” events.

time t2 t9 t12 · · ·
sA a1 a1 a2 · · ·
A − − + · · ·
sB b2 b1 b1 · · ·
B + − + · · ·

Taking the ergodic hypothesis to justify taking the data at
t2, t9, t12, ... to be an ensemble of independent events,

and
ignoring the times, we can model the statistics of this
data by a probability distribution p(sA, A, sB, B).
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A
sA, A

B
sB, B

The probability distribution p(sA, A, sB, B) is just part of
an initial condition, at the time of the experiment, for
a random field model.

Initial conditions are not constrained by classical physics,
but more experimental effort is needed to set up unlikely
initial conditions, which have higher free energy.

Experiments that violate Bell inequalities are not easy.

The experimentally grounded p(sA, A, sB, B) at the time of
the experiment (partially) determines what the initial
conditions must have been in the past and will be in the
future.

What Bell says is that the field in the past cannot have
been what it would have had to have been to result in
what the field is now, because that would be weird.

Saying that weird initial conditions in the past are OK is
known as the “conspiracy loophole”.
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To derive Bell inequalities, Bell introduces various
a priori constraints on what the initial condi-
tions in the past are allowed to have been.
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Bell’s constraints are based on an idea of common cause
that is well-founded for a classical particle model, but
is relatively unmotivated for a random field.

For a classical particle model, two particles come from a sin-
gle source, the common cause of two correlated events.

The correlations of a random field (and of a quantum field)
evolve from correlations at earlier times.

There is a “distributed” cause, not a common cause.
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Correlations now evolve out of past correlations and
into future correlations.

For example, there is equilibrium now because there was
equilibrium before.

There are non-local correlations between observables of a
classical field at thermal equilibrium, enough to make
it impossible to derive Bell inequalities.

Where do equilibrium correlations come from? They’re just
there (or we arranged it).

The violation of Bell inequalities shows that there are no
simply localized particles that would imply pervasive
common causes.
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A
sA, A

B
sB, B

There is a distinct tradition of discussing Bell inequalities
as about measurement incompatibility, or
as showing that particle properties must be contextual,
not as about nonlocality,

starting with Accardi (1981) and Fine (1982).

From the experimental data, we can construct prob-
ability distributions p(A, B|a1, b1), p(A, B|a2, b1),
p(A, B|a2, b2), and p(A, B|a2, b1).

Without making any assumptions about locality, we can
prove that we cannot in general construct a probability
distribution p(A1, A2, B1, B2|a1, a2, b1, b2) that has all
four of the above as marginals.

We cannot talk about measuring both a1 and a2 at the
same time.

The Kochen-Specker paradox says the same thing.

When we construct an NKS or random field model, we must
ensure that there are no well-defined particle properties.
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A
sA, A

B
sB, B

The experimental data idealized as a probability distribu-
tion p(sA, A, sB, B) is a (partial) initial condition for a
quantum field model as much as it is for a random field
model.

A quantum field state determined by this experimental data
determines correlations at future and past times to the
same extent as a classical random field.

So there is as much “conspiracy” in a quantum field model
as there is in a continuous random field model.

We should not conclude that quantum field theory is un-
reasonable, but that a continuous random field model
is as reasonable.
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Measurement for random fields

Ideal classical measurements do not affect other measure-
ments or the system they measure.

If the quantum fluctuations of a measurement device are
significant, we model the measurement device and its
quantum interactions with the “measured system” ex-
plicitly.

Equally, when we construct a quantum field model, if the
thermal fluctuations of a measurement device are signif-
icant, we model the measurement device and its thermal
interactions with the “measured system” explicitly.

A random field model is not much more difficult than a
quantum field model if thermal fluctuations already
have to be taken into account.

Even if we cannot reduce quantum fluctuations, we can
imagine what results we would obtain if we could.
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A quantum model is intrinsically contextual, through mea-
surement incompatibility, whereas a random field has
to be explicitly contextual.

We have to include a description of experimental apparatus
and the effects of its thermal and quantum fluctuations
in our random field models.

A random field model is contextual insofar as it includes
apparatus degrees of freedom.

This is not contextuality in the usually pejorative sense that
particle properties depend on what apparatus is used.

There are no precise particle properties.
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Discrete event measurements

A “discrete event measurement device” is a metastable
thermodynamic state that is tuned not to transition to
its registration state (except for its dark rate statistics).

e.g. CCDs, photographic plates, semiconductor devices,
bubble chambers.

When a transition to the registration state happens, a feed-
back process returns the device to its metastable state
as quickly as possible (unless it’s a photographic plate;
a bubble chamber is returned to its metastable state
cyclically rather than through feedback).

When the device is put near various plugged-in and turned-
on apparatuses, different statistics for transitions to its
registration state are observed — a change of the envi-
ronment changes the response.

Discrete transition events are a consequence of (engineered)
thermodynamic properties more than of any discrete
structure of the external field.

The discrete events do not have to be taken to represent
the arrival of individual particles.
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Conclusion

NKS modelling should be probabilistic, and include some-
thing like quantum fluctuations, distinct from thermal
fluctuations.

If it’s a classical model, it’s a random field model.

NKS modelling should include thermodynamic transitions.

NKS modelling should have different effective evolutions at
different scales and in different thermodynamic condi-
tions.

The effective dynamics should in some conditions lead to
identifiable particles, in other conditions not.

NKS modelling should be more formally cognizant of
constraints.
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