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This paper shows how shape grammar can be used to derive cellular au-
tomata (CA) rules. Searching the potentially astronomical space of CA
rules for relevance to a particular context has frustrated the wider ap-
plication of CA as powerful computing systems. An approach is offered
using shape grammar to visually depict the desired conditional rules of
a behavior or system architecture (a form-function) under investigation,
followed by a transcription of these rules as patterns into CA. The com-
bination of shape grammar for managing the input and CA for managing
the output brings together the human intuitive approach (visualization of
the abstract) with a computational system that can generate large design
solution spaces in a tractable manner.

1. Introduction

Cellular automata (CA) offer a large potential for simulating complex
system dynamics using parallel computational processes. Challenges
exist, however, in the practical utilization of CA. To date, researchers
and practitioners continue to express uncertainty as to how to apply
CA to modeling and simulation because of the immense difficulty in
finding a set of rules from an astronomically large rule space [1] that
might generate legitimate system architectures. Others have attempted
to address finding CA rules by trial and error, genetic algorithms [2,
3], and genetic programming [4]. If the rule space can be managed,
with proper representation of the underlying physics as demonstrated
in the lattice gas research [5, 6], then CA may prove their applica-
bility for generative systems. A CA methodology in complex system
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modeling would be attractive because CA provide the advantages of
parallel processing for large data sets with minimal overhead [3] and
local neighborhood interactions comparable to nature’s processes. Ad-
ditionally, the CA approach is algebraic and logical, in that it permits
using symbolic variables and functional operations according to speci-
fied rules. This allows the opportunity of mapping a visually depicted
form-function (system architecture) directly into the CA and to present
the output in a visual-spatial format as a designer would do.

A shape grammar is a formal set of rules applied to shapes to generate
a language of design that allows the visualization of the desired form
and function of the rules. The research objective herein is to exploit the
potential of CA by presenting an approach for using shape grammar
[7] to derive CA rules. The essential scope of this investigation falls
within the domain of self-generative system architecture, with specific
methodology entailing the use of a shape grammar for establishing the
rules of the design process (at both the elemental and organizational
levels). This is followed by a CA approach for actually generating the
creative design space. The shape grammar thus expresses the material
form relationships and the physics of the form-function and becomes
transcribed into CA rules and their conditional neighborhoods, with the
CA rules generating the design space.

Using shape grammars offers the system architect the capability of
assuring that design proceeds by rules that embody the relevant prin-
ciples of physics. The architect can then select for design candidates
that meet stability, robustness, aesthetics, cost, and other requirements,
thereby managing an otherwise possibly explosive design space. At the
same time, shape grammars allow the system architect to explore a di-
verse variety of design styles, providing opportunities for the emergence
of unexpected or unpredictable higher-order components and modular
structures with potential usefulness. The system architect’s role is thus
to create a design space of conceptualizations and select good system
architectures for a given specification, to determine the design physics
and selection rules to be implemented, to develop the shape grammars
to reflect these rules at the modular and hierarchical levels, and to pro-
gram the CA to capture these rules and output a design catalog of the
best candidates that meet the specification.

1.1 Cellular automata

CA comprise rules for evolving the state of a discrete dynamical system.
The same rule is applied repeatedly to a system state, and new states are
generated in parallel as a step function. As Wolfram [8] has emphasized,
simple rules and programs can create complex systems. CA are local
and parallel processors that can model physics in time and space. A
rule, which can consist of a logical computation and/or pattern match
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(such as to a list structure), is applied to each cell as based on the values
of cells in its defined neighborhood, in order to determine its value at the
next step. The origins of CA are attributable to von Neumann [9, 10],
Ulam and Zuse [11], and Wiener [12], and its resurgence to Wolfram
[13]. A survey of CA in the literature may be found in [1].

The simplest neighborhood is an elementary system consisting of a
one-dimensional row of cells, each of which can contain the value 0 or
1 (depicted as two colors), with a local neighborhood of size 3 (range
or radius of 1). More complex CA can be defined on two- or higher-
dimensional arrays with multicolored cells and larger ranges. Each rule
is represented as an array of cells. For the case of a local neighborhood
of size 3, each triplet determines a single output cell in an array. A triplet
with binary values can have eight possible patterns from 111 to 000. A
local neighborhood of size 3 thus can generate 256 possible rules. The
formula for calculating the rule size space in a one-dimensional system
is kk(2r�1)

, where k represents the color possibilities for each state and
r is the range or radius of the neighborhood. It is interesting to note
that merely increasing r from 1 to 2 and maintaining the colors at two
increases the rule space from 256 to 4.3 billion.

Moreover, as illustrated in Figure 1, the number of parameter options
under the discretionary control of the modeler (the “controllables”) can
produce a rule space that is beyond comprehension. Consequently, one
of the fundamental difficulties in the application of CA is finding rules
from this exploded space that exhibit the desired behavior.

CA can model spatio-temporal systems (e.g., biological, physical, or
engineering) in which complex phenomena build up as a result of many
simple local interactions. This local neighborhood seems similar to a
“bounded rationality,” as described by Herbert Simon [14], wherein
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Figure 1. CA parameter space.
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phenomena only act in local areas, do not explore all possibilities, and
make a perfectly rational choice. The local neighborhood is a subset
of full information, only a portion of perfect information is used for
decision-selection at any moment as it is computationally intractable to
consider full information in order to make a rational choice. The uni-
verse may be filled with such local neighborhoods which not only follow
their own set of rules but also interact with other local neighborhoods
in their universe, thereby collectively creating emergent behavior.

Lattice gas-fluid dynamics have been modeled successfully by CA
rules using simple patterns of particle behavior adhering to the physical
laws of conservation of momenta and conservation of mass [5, 15].
Most noteworthy is the use of a hexagonal neighborhood comprising
64 patterns of particle collision behavior which exactly predicts the
Navier–Stokes equation of low Mach velocity gas dynamic behavior.

A different approach to finding a CA rule was taken by Hajela and
Kim [3] in determining solutions to mechanical engineering problems.
They used a genetic algorithm technique with crossover, mutation, and
selection after testing for fitness to converge on a two-dimensional rule
for finding the minimum energy of both a simple cantilever beam with a
load applied at the end, and of a flat plate with a hole in its center and a
pull force applied in all directions. Their paper goes on to cite two main
difficulties with the current state of parallel processing, stemming from
the more typical pattern of linear thinking by humans. First, existing
programs are reworked ineffectively for use on different processors.
Second, programs are written with different domains (as they put it) to
be processed in parallel. They noted that there is a diminishing rate of
return in processor speed as additional processors are added due to the
necessary software overhead applied to control the different processors
and the algorithm. CA, by nature being parallel, are therefore thought
to be possibly a more natural way to conduct parallel processing.

1.2 Shape grammar

Shape grammar is a formal generative approach that has been applied
to creating architectural forms. Its origins are attributable to the work
of Stiny and Gips [7], reinforced by Mitchell [16, 17], Knight [18], and
Cagan [19] (who has actually generated real product designs using shape
grammars with customized output programs). Shape grammar is a pre-
cise and at the same time intuitive methodology in the visual medium
for generating languages of design. Shape grammars can be used an-
alytically, as in reverse engineering, for characterizing and classifying
designs and patterns of designs, referred to as styles in architecture. A
shape grammar includes a vocabulary of shapes and a set of spatial
relations to control the positioning of shapes in the vocabulary. The
shape rules are created and applied recursively starting with the initial
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shape, and the generated designs compose a language. Operations and
transformations may be applied to the shapes and the rules themselves.
The practice of shape grammar in the field of architecture has focused
primarily on form. However, functions and properties of shapes can be
included in the grammar [20].

Formal grammars are systems of rules for characterizing the struc-
ture, or the syntax, of sentences in natural and artificial languages.
Shape grammars are a geometrical design adaptation of Noam Chom-
sky’s formal (phrase structure or transformational) grammars [21] and
are recursively enumerable, having the capability of producing unre-
stricted languages [22]. Thus, shape grammars are systems of rules
for characterizing the composition of designs in spatial languages. (See
Figures 3 through 7 later for a demonstration of shape rules.)

As in Chomsky’s formal grammars, which generate a language of one-
dimensional strings, a shape grammar is also defined by a quadruple
SG � (VT , VM, R, I) but generates a language of two- or even three-
dimensional objects that result in an assemblage of terminal shapes,
where

VT is a set of terminal shapes (i.e., symbols)
VM is a set of markers (i.e., variables)
R is a set of shape rules (addition/subtraction and euclidean

transformations), u � v is the shape rule (i.e., productions;
a production set of rules specifies the sequence of shape
rules used to transform an initial shape to a final state and
thus constitutes the heart of the grammar [23])

u is in (VM�VT)� and v is in (VM�VT)�; where � and � refer
to excluding or including the empty set

I is the initial shape to which the first rule is applied (i.e., the
start variable) [22].

A shape grammar applies rules to a given shape such as a rectangle
by the accompanying operators, which may consist of shape addition,
subtraction, and deletion. In addition, transformations are formally
defined operations that specify how the components of grammars are
modified to form new grammars. Transformations change the rules
through the operators of translation, rotation, reflection, and scaling.

1.3 Other self-generating computational approaches

There is a considerable body of research on other approaches to bottom
up self-generating design. Evolutionary algorithms arose from attempts
to model the processes of nature as the ultimate designer, while tapping
computers and programs to manage the time and space problems that
confront man as the designer. Various evolutionary computation (EC)
approaches have been developed according to darwinian processes of
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evolution and have been applied in such endeavors as truss bridges [24],
a sports car body and boat hull [25], LEGO® bridges [26, 27], tables
[28, 29], circuits [4], programs, and others.1 EC consists of at least
four subapproaches: genetic algorithms (GAs) [30, 31], evolutionary
programming (EP) [32], evolutionary strategies (ES) [33], and genetic
programming (GP) [34]. EC approaches are characterized as having the
following in common.

1. A given and usually random population of points (potential solutions) in
the search for a solution to the fitness function.

2. Direct “fitness” information instead of function derivatives.

3. Evolutionary processes using probabilistic rather than deterministic tran-
sition rules (start with an initial population and the operators of selection,
crossover, and mutation).

4. Evolution of solutions with parallel search for a solution to the fitness
function.

5. Selection based on survival of the fittest.

Thus in the EC process, crossing genomic modular segments generates
higher-order modules and greatly expands the design space (diversity).
The principle of survival of the fittest leads to pruning out those designs
with low or no probability of survival. However, ECs are a probabilistic
set of methods that operate without regard to the laws of physics, discard
possibly superior fits by not exploring the full combinatoric space, and
are computationally bounded arbitrarily—halting is user defined [35].
This can lead to the generation of extraneous forms, which wastes
computing time. Furthermore, there is no agreed upon method for
deciding upon crossover and mutation percentages or location points.
The more common GA approach also requires considerable hand of man
(separate algorithmic fitness functions or tests) to physically examine
the legitimacy of each structure created. The GA process is still at the
beginning stage of being adopted for practical applications in real-world
designs. Controlling the methodology seems to be the major issue in
the use of GAs, but they are capable of generating designs quite rapidly
and have been appealing for study across a variety of academic research
purposes for over 30 years.

Lindenmayer systems (L-systems) are another kind of rule-driven
design generation approach which entail the rewriting or substitution of
strings of abstract symbols using production rules [36–38]. L-systems
have been successful at generating designs emulating plant nature as

1For many examples refer to papers and proceedings from the Special Interest Group
for Genetic and Evolutionary Computation of the ACM available at www.sigevo.org.

Complex Systems, 17 (2007) 79–102



Using Shape Grammar to Derive Cellular Automata Rule Patterns 85

well as artificial architectural designs. Starting with an initial simple
condition (axiom), production rewrite rules are recursively applied and
can be geometrically interpreted. Typically, the rules are serially ap-
plied by an agent in order to generate complex forms [39]. L-systems
differ from shape grammar in that their production rules operate on
strings of symbols, whereas shape grammar rules act on shapes di-
rectly. Stauffer and Sipper [40] utilized an L-system as a one-dimensional
character string generator, transforming the abstract output into a CA
for a two-dimensional image interpretation. Noting some of the same
problems with evolutionary design approaches, they felt that bridging
L-systems and CA could offer a promising alternative to the study of
self-replication and growth. The critical issues in this methodology,
however, appear to be the extent of L-system rule design carried out by
hand, especially considering its abstract form, and the ease of transfor-
mation to a viable CA format. Otherwise, there are interesting parallels
between this combined approach and the shape grammar–CA approach
proposed herein.

1.4 Comparison of shape grammar and cellular automata

A comparative examination of the shape grammar and CA method-
ologies reveals surprising complementarity (see Table 1). Essentially,
both the shape grammar and CA approaches seek to identify whether
a particular (local) pattern (shape or cell grid) is present and if so,
provide rules to transform the recognized pattern as indicated. Shape
grammars contain a set of rules applied to an initial condition as se-
quentially determined by the designer. While the CA approach typically
runs out a single rule recursively, the designer/programmer certainly still
has the power to selectively apply a series of CA rules by concatenating
them into a production set order similar to a shape grammar. Since
the local neighborhoods for CA, in copying real-life development, can
capture both the function (what a system does, its purpose) and the
form (the objects that deliver the function), there is no reason why a
shape grammar cannot similarly do so through thoughtful rule defini-
tion. Thus, while shape grammars have tended to give results that were
simple to perceive and conceive of but were too manually laborious,
and CA have been easy to use for design generation but too abstract
and unrestrained productively, both approaches serve as clear models
for bottom up system architecting, utilizing basic elements and rules for
transforming them as based on their patterns in a given space (context
or neighborhood).

In summarizing the disadvantages and advantages of each comput-
ing methodology for generating system architectures, as mentioned ear-
lier, a major problem with the CA approach has been that discovering
self-generating rules for a particular intent out of an almost infinite
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Basis of comparison Shape grammar approach CA approach

Handling of system ar-
chitecture (form-
function)

Form (shape) emphasis
currently; function could
be included

Has capability to have
form and function en-
coded

Spatial design represen-
tation

A design is a set of shapes
generated by rules starting
with an initial state

A design is represented
by sets of binary (or
multicolor) cells on
one-, two-, or higher-
dimensional arrays

Design development Provides ease of design
and visualization

Ease of transcription
for computation of the
design

Intuitive use Visually intuitive rule de-
velopment for form and
function

More difficult to vis-
ualize the final form-
function to the neigh-
borhood

Interpreter or compiler Generative rules devel-
oped and sequenced by
hand and applied by hand
or machine

Mathematica® [41],
the chosen program-
ming language for this
investigation, will run
all rules automatically
and manage the combi-
natorics and graphical
output

Computing process Recursive generation pro-
duces modules, hierar-
chies

Same

Pattern analyzing capa-
bility

Can be used to analyze de-
sign styles manually

Can be used easily as a
pattern recognizer and
may be suitable for ex-
amining cause–effect by
reverse engineering

Table 1. Complementarity of shape grammar and CA.

CA rule space is beyond human capability. Furthermore, formulating
design rules directly into CA format is an abstract and computation-
ally complex task. On the other hand, as Professor Stiny2 points out,
there presently is no “robust” compiler or interpreter for shape gram-
mars. This deficiency has limited the practical use of shape grammar
to hand manipulation, which serves an educational value in itself, and
by self-development of customized software which may have limited
generalizability for other applications.

2Personal communication.
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Despite these shortcomings, each approach has its advantages. The
benefit of shape grammar lies in its ability to serve as a means of visual
and intuitive coding that is highly adaptive to the visual and pattern
recognition capability of the human brain. Shape grammar provides an
intuitive feel in a concrete medium and can visually as well as conceptu-
ally represent physical phenomena. A production set can be developed
in a logical manner that is easy to change or correct. Since CA are
algebraic and logical, they can be easily programmed once a rule(s)
is identified (such as by means of the language Mathematica [41]) for
generating output from an initial condition. Large design spaces can
be rapidly produced. The complementarity of shape grammar with
CA therefore suggests that there is an opportunity to combine their
strengths, offsetting their weaknesses, in order to derive CA rules for
generating system architectures, or languages of designs, that will meet
given specifications.

The principal research goal of this investigation, then, is to make a
connection between shape grammar and CA that could lead to more ef-
fective modeling and design of legitimate system behaviors, with quick,
extensive outputting of a solution space (system architectures that sat-
isfy a specification). More specifically, the form-function captured in
the shape grammar would be transcribed into the more abstract CA,
mapping the physical relationships among shapes into a local neighbor-
hood of cells to obtain the associated CA rules, which then provide the
means for computation. This combination solves the problems of shape
grammars being labor intensive for outputting the design space and CA
being labor intensive for inputting data and rules.

2. The generalized shape grammar to cellular automata mapping

approach

In order to address the stated research goal, this study demonstrates
three stages for deriving and applying CA rules to develop solutions for
a given problem. The shape grammar design methodology is applied
first, followed by a shape grammar to CA (SG�CA) transcription step,
and then the actual CA computational generation of solutions. Two
examples, a simple LEGO bridge and the existing lattice gas model, are
used to clarify this approach at an elementary level as research on this
SG�CA approach is in its early development.

The first stage creates a shape grammar to visually depict the given
problem (or specification) through a sequenced set of shape rules that are
applied recursively to a defined position, beginning with an initial shape
and ending with the specified goal. This stage entails decomposing the
problem into its basic functional requirements, selecting the appropriate
physical elements, modeling the physical laws applicable, and pictorially
representing the physics as shape rules for the behavior of the elements in
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relation to each other. Empirical investigation with the initial elements
to understand how they combine together and how they fail provides
necessary information for proceeding to the development of the shape
grammar to address the problem at hand.

In the first example of the bridge, a single block shape was selected as
the primitive, and experiments were conducted by hand with the calcu-
lation of mechanical statics to determine the minimum, or least action
[42–45], modular shape configuration required to construct a column
supporting a top row of blocks. The block was changed to a LEGO brick
due to its additional connective force, which effectively expanded the di-
versity of columnar shapes and allowed for emerging interconnectivity.
The second example of the lattice gas used a single particle as the prim-
itive. Previous researchers [6] had discovered by iterative experimenta-
tion that 0 to 6 particles represented in a hexagonal star graph properly
matched the Navier–Stokes equations. The interactive behavior of these
particles was represented in this study as shapes in the form of picture
graphs depicting states at time t and then state changes at time t � 1.

In the second stage, the shape rules are directly transcribed into CA
rules following the logical definition of the neighborhood of shapes
and their interrelationships as captured in the shape grammar. In ac-
tuality, the shape rules are transcribed into list mappings, which is an
accepted alternative practice for defining CA rules, in order to simplify
the construction of a neighborhood. The CA list rule structure is the
neighborhood.

The brick shapes for the bridge were transcribed to numbers (or
different colors), which were then expressed as neighborhood list map-
pings. Concatenating these list mappings as if assembling the bricks
created the production set of rules for the basic bridge module. The
lattice gas picture graphs were transcribed into a Moore neighborhood
[46, 47] hexagonal format [11], then expressed as list mappings.

Once the CA rules are concatenated in a step comparable to sequenc-
ing the rules in a shape grammar, system solutions can be generated
in the third stage. The CA rules are now read as a production set for
subsequent graphical output.

After the production set constructed the basic bridge module, a com-
binatoric approach was employed to produce all the varieties of primary-
order building modules and to combine them into higher-order modules.
This differs from the lattice gas rule set which behaves similar to a mul-
tiagent system. The state at time t in a neighborhood is a list structure
which is correspondingly mapped to another list pattern for time step
t � 1. The lattice gas model can be initialized in any state, the number
of evolutionary steps are selected, and the system execution proceeds
in time steps, representing the behavior for the particle system while
providing a complete history of state changes. Conservation of mass
and momentum are preserved throughout the execution.
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The SG�CA methodology is illustrated first with the development of
a brick bridge using shape grammar as the design tool, followed by a
transcription into CA rules for the computation of the designs. Then, by
diagramming the rules determined by the lattice gas studies, a SG�CA
application for the particle dynamics is demonstrated.

3. Case study of a bridge design

A LEGO bridge was used to investigate the properties and capabilities
of the SG�CA method and to illustrate the results. This method suc-
ceeds in generating rules that build plausible bridges from elementary
structural units that obey basic laws of static equilibrium, where the
sum of all the forces and moments in the system equal zero.

3.1 Stage 1: Modeling of a five-row bridge using shape grammar

methodology

An unrestricted shape grammar becomes helpful as a visual design aid
for analyzing and synthesizing the elements and the rules that relate
them for a given specification. The relevant physical constraints can be
captured in a shape grammar as in the following procedure.

A shape grammar for a bridge begins with the selection of a building
primitive, in this case a rectangular block or brick, and identification
of the essential form-function concepts of a horizontal bridge deck and
vertical column supports. This decomposition leads to the most basic
modular assembly, a “T” structure composed of two blocks laid hor-
izontally, supported by a single block. Figure 2 depicts a free body
diagram of three blocks used to construct this T according to the prin-
ciple of least action, showing the direction of the resultant force from
each block’s weight at its center of gravity. The arrows indicate the
tipping moments of the blocks. If the primitive were a simple, smooth
block, the neutrally stable support condition would require only a 50%
block overlap to provide static equilibrium to the upper blocks. Weight
alone creates the stability for these overlapped blocks.

Simple blocks positioned with 50% overlap is an ideal state requiring
perfect balancing to prevent collapse, and a single block’s fall can cause a
cascading failure among its neighboring blocks. Consequently, there is a

wt. wt.

wt.
9090

moment
direction

Figure 2. Basic assembly T module.

Complex Systems, 17 (2007) 79–102



90 T. H. Speller, Jr., D. Whitney, and E. Crawley

≡
A brick 2 cells

I. VT VM.
Figure 3. Shape grammar notation. I is the initial condition, VT is a termi-
nal shape with the markers erased, and VM is a variable spatial marker for
placement.

Row 1

Production

Rule 1-1

Row
Rule set

I .
. . .

Initial Condition

Figure 4. Shape rule depiction of bridge Row 1.

limitation to the number of stable block bridge architectures that can be
designed. Unstable block columns do not become useful under further
development as they cannot interconnect with other block columns to
become stable. LEGO brick columns, on the other hand, use snap
together joints that result in additional reacting moments beyond those
created by weight alone. Providing such a connective force increases
the possibility space for creative diversity due to the emergence of new
structures with greater stability when LEGO columns are combined.

The basic assembly T module,3 developed from an initial primitive
Rectangular Brick , is defined by shape rules which embody this first design

production. Per shape grammar notation (see Figure 3), the marker is a
spatial label that indicates the proper juxtapositioning of the next added
brick. These markers are later erased by terminal rules. The initial brick
shape is represented by two squares (two cells in the CA lattice) for ease
of SG�CA transcription.

Figure 4 shows an initial condition and a single rule that are then
sequenced in a production rule set to build Row 1. The large boldface

3A module is an interconnected group of quasi-independent parts with functionality
that can be reused in composing the system. It is believed that modularity is an integral
property of hierarchical construction.
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Rule 2-1 . .Row 2 . .

Figure 5. Shape rule depiction of the basic T module.

arrow is a mapping symbol meaning that the shape on the left-hand
side is replaced by the shape on the right-hand side of the arrow. The
� symbol indicates a reference “cross hair” for locating the rule output
shape with respect to the input shape.

Row 1 is now the initial condition and an additional rule is applied
to produce Row 2 to create the basic T module, which constitutes a
section of the deck of the bridge, supported by the minimum number of
bricks below, as is depicted in Figure 5.

The remaining rows supporting the basic T module are generated
according to three possible equilibrium formations by which to add
each next row’s supports, the stable 50% offset of the brick to the left
or 50% offset to the right (least action principle), in addition to keeping
the brick straight inline for added diversity (see Figure 6).

For example, as shown in Figure 7, the five-row column module is
created by concatenating the Row 1 and Row 2 rule sets, I,1-1,2-1 as
defined in Figures 4 and 5, then applying a selected combinatoric from
the L, R, and S rule sets (three concatenated rule sets for three rows), such
as {L1,L2,R1,R2,S1,S2,L3,R3,S3} to produce the complete column.

3.2 Stage 2: Transcription of the five-row bridge design space into

cellular automata

Using the shape grammar rule set to first define the cell characteristics
and produce the T module, which will be combined with another module
to make a higher-order bridge span module, the same rule set can then be
transcribed easily as a CA for the purpose of managing the combinatoric
task of generating a larger design space.

In Figure 8, an empty space (not occupied by a brick) in the shape
grammar production is represented by a 0 (or the color white) in the
corresponding cell within the CA lattice. The 1 (or color black) in
a cell represents half of a brick, and the 2 (or third color) represents
the or spatial marker required to position the other half of the brick
where needed. The actual CA rules for bridge Rows 1 and 2 are shown
in Figure 9 in a one-dimensional CA neighborhood of size 3. In this
example, the CA has six triplets as lists representing neighborhood rule
mappings, which determine the next system state.

CA rules to capture the L, R, and S shape grammar options for gen-
erating additional support rows for the bridge are shown in Figure 10.
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     L    R

Rule L1

Left Offset
Rule set

Rule L2

Rule L3

.

.

.

.

Rule R1

Right Offset
Rule set

Rule R2

Rule R3

.

.

.

.

S

Rule S1

Straight Line
Rule set

Rule S2

Rule S3

.

.

.

.

Figure 6. Shape rules for generating Rows 3 through 5 of the column.

Row 1

Row 3

Row 5

Row 4

Row 2..
.

Row 1

Row 3

Row 5

Row 4

Row 2 L1

L2, R1

R2, S1

. .

S2

Delete
Markers 
{L3,R3,S3}

Figure 7. Five-row column module.

. . . .

1 2 2 1

1 1

1 2 2 1

1 1

Shape Grammar Production

Shape Grammar to Cellular Automata
Transcription

0 0 0 0

Empty
Space

Empty
Space

Empty
Space

Empty
Space

Figure 8. Transcribing the shape grammar of Rows 1 and 2 into a CA.
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1 2 2

1

2

1

12 1 2

0

0 1 0

0

2

Neighborhood Rule Mapping using Lists:

1 1

0

2 1 2

0

1

}0{{1,1,2}{0}{2,1,1}}1{}1,2,2{}1{}2,2,1{ →→→→ }0{{2,1,0}{0}{0,1,2} →→

Figure 9. CA representation of the shape grammar for Rows 1 and 2.
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0 0 0

0

01 0 1

1

0

1 1 1

1

1

1

0 0 0

1

11 0 1

0

1 0 0 1

0

1

0

0 0 0

0

01 0 1

0

0

1 1 1

1

1

1

0 0 0

0

11 0 1

0

1 0 0 1

1

1

0

0 0 0

0

01 0 1

0

0

138 in base 10

{1, 0, 0, 0, 1, 0, 1, 0}

208 in base 10

{1, 1, 0, 1, 0, 0, 0, 0}

200 in base 10

{1, 1, 0, 0, 1, 0, 0, 0}

Figure 10. CA rule representation for Rows 3 through 5.

3.3 Stage 3: Generating system architectures for bridges

By concatenating the CA rules shown in Figure 10 combinatorically, a
complete generation of all possible five-row column modules results in
27 designs as enumerated in Figure 11. These CA-generated column
modules will be used as the basis for bridge supports in all further
design/build combinations.

These columns are combinatorically paired into 729 higher-order
modules as illustrated in Figure 12. The red (or gray) color denotes the
redundant overlap of whole and half bricks, having the emergent effect
of reducing the number of bricks in the structure.

Figure 11. 27 column modules.

Complex Systems, 17 (2007) 79–102



94 T. H. Speller, Jr., D. Whitney, and E. Crawley

Symmetric

Asymmetric

A new primitive emerges
from some module

combinations
(3 cell brick)

a stable higher
order module with
a reduced number

of bricks

Figure 12. Emergence of diversity, new components, greater stability.

Figure 13. Sample of five-row bridge designs.

These higher-order modules can be further combined, such as by
reflection or repetition, to create 1458 designs of a single-level bridge,
with samples presented in Figure 13. Layering and scaling can extend
the flexibility of options for creating bridges of greater dimension. Thus,
the LEGO bridge example begins with just a single building primitive
developed into a basic bridge component, to which three simple rules
are applied recursively and combinatorically to create design complexity
and diversity. Varying the pattern of reuse for this set of basic modules
(by reflection or repetition) to complete the bridge greatly expands the
possible solution space for bridge designs.

4. Example of shape grammar applied to the lattice gas problem

Because its neighborhood conditional rules can be enumerated visually
for simple simulation, a lattice gas system lends itself to modeling by
the SG�CA approach. Previously, the physical properties of thermo-
dynamic and hydrodynamic systems had been captured by the discrete
lattice gas CA models [48] exactly in accordance with the Navier–Stokes
equations (referred to as FHP [6], which are the initials of the scientists’
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last names). The lattice gas CA emulate the motion of molecules as de-
terministic and reversible. However, the discovery of the proper neigh-
borhood for depicting the physical properties of fluids was not a trivial
matter [5, 15]. Utilizing shape grammar first to represent the particle
motion rules and then transcribing this shape grammar gas model into
CA rules may have offered a more intuitive and therefore quicker route
to the system architecture solution.

4.1 Stage 1: Modeling a lattice gas system using a shape grammar

methodology

The relevance of lattice gas to this paper is that these researchers dis-
covered and hand drew the enumerated particle collision patterns to
fit within a CA neighborhood, which could have equivalently been ex-
pressed by a shape grammar with the embedded fluid dynamics. The
physics of the lattice gas concept are well explained in the references pro-
vided herein. Briefly, the earlier HHP [49–51] model (HHP the initials
of the scientists’ last names) used a regular square neighborhood pattern
that did not include the isotropy principle, resulting in approximate but
not precise simulations of fluid motion. This prior trial for modeling
lattice gas provides evidence that a shape grammar would only be as
good as the researcher’s ability to properly capture these behaviors in the
production rules. The FHP model utilized a star graph with six directed
edges to compose a production set of 64 possible rules (patterns). These
graphs are compatible to a shape grammar approach of pictorial rule for-
mulation. Collisions, if any, are arranged in a hexagonal pattern of edges
at 60° to satisfy the isotropy as well as other required physical proper-
ties. While enlarging the neighborhood might seem to better capture the
physics (but would make the model more complex), there is no apprecia-
ble gain in behavioral accuracy. Of note, head-on collisions could have
an equal and opposite direction of ricochet, but the practice by lattice
gas researchers has been to have the particles fly apart at opposite angled
directions rotated left 60° in order to introduce random behavior [6].

The drawings in Figure 14 characterize the rules for this lattice gas
language in the shape grammar format. They consist of patterns di-
rectly used to evolve the CA. The CA rules are approximations of the
Navier–Stokes partial differential equations; however, these equations
can only be solved for very simple contexts whereas the CA can model
complex nonlinear behavior [48]. The convention incorporated for the
particle flow is that arrows of orientation on the left-hand side (lhs) are
directed inward to the neighborhood and on the right-hand side (rhs) are
directed outward from the neighborhood. The FHP patterns start with
the empty condition, the pattern (condition) of zero particles present
in the neighborhood, and include the patterns for all possible particle
movements with one to six particles present.
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0--empty condition 1 particle present has 6 
different possible trajectories 

2 particle can have 15 
trajectories

3 particle circumstance has 20 
patterns of symmetry 

4 particle patterns consist of 
15 symmetries 

5 particle condition has 6 
symmetry patterns 

6 particle collision behavior 
has a single pattern 

Figure 14. Example particle trajectories from each symmetry rule group.

4.2 Stage 2: Transcription of the lattice gas system design into

cellular automata

These patterns of incoming and outgoing scattered particles in essence
constitute shape rules in a shape grammar that captures the thermody-
namic and fluid physical properties required to yield the proper behavior
of fluid-like molecules. The SG�CA transcription can then proceed by
the patterns themselves. Given six possible directed edge paths for par-
ticle motion, as indicated by the vertices of the hexagonal star graph in
Figure 15 and reformulated into a nine-vertex star graph to accommo-
date a nine-cell CA neighborhood, there are 26 � 64 possible particle
flow patterns. Using the nine-vertex star format, the position of particles
in these patterns can now be coded in binary form in the more typical
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(a) (b)

Figure 15. (a) Hexagonal star graph (seven vertices) and (b) nine-vertex star
graph (0s showing the empty center and two unnecessary positions).

0 c b

d 0 a

e f 0

Figure 16. Nine-cell CA neighborhood matrix capturing the hexagonal format.

nine-cell CA (Moore) neighborhood, as shown in Figure 16. The state of
the neighborhood at the beginning of the step function is the incoming
condition of particles expressed as a six-element binary list. The letters
read counterclockwise can contain a 1 or 0. The 0 cells have no effect
on the neighborhood because those positions lack a particle or are not
located within the hexagonal neighborhood of particle interaction.

The 64 collision patterns can be exhaustively enumerated as lists.
Explicit replacement rules lhs�rhs contain the particle patterns. Fig-
ure 17 shows how the five-particle hexagonal pattern, which can be
represented as this list,

�1,1,0,1,1,1	 � �1,1,1,1,1,0	 (1)

is equivalently expressed in the two-dimensional nine-neighborhood ma-
trix. The other 63 particle collision patterns can be depicted in the same
manner. The shape is converted to equivalent numeric symbols for com-
puting since there is no interpreter or compiler for dealing directly with
shapes as symbols. The CA rules are executed in parallel on a grid
wherein the particles move according to their correct physical proper-
ties and conform to the Navier–Stokes equations for fluids and gases at
subsonic velocities.

The HHP researchers seem to have based their original method for
representing particles on the von Neumann neighborhood paradigm re-
duced to a square. However, their original neighborhoods produced
particle patterns that were insufficient for capturing the physics of fluid
dynamics. Subsequent research concentrated on finding a CA neigh-
borhood that could more accurately represent the particle dynamics.
Determining that the hexagonal particle pattern could be captured in
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Figure 17. Five-particle shape rule and equivalent two-dimensional nine-
neighborhood matrix.

a nine-cell Moore neighborhood, with the edges of the cells as parti-
cle movement lines, was a major leap from traditional CA paradigms.
The physics may have been basically understood as evidenced by the
reference to the Navier–Stokes equations, but the manner of incorpo-
rating the physics into an appropriate CA neighborhood, accounting
for particle position and direction as well as empty spaces, was not eas-
ily foreseen. The lattice gas researchers thus had unknowingly set up
a shape grammar for fluid particle behavior but had not been aware
of the potential use of this pattern mapping approach for discovering
the pertinent CA rules. (Stage 3 in this SG�CA, generating the system
architecture for lattice gas, is described in FHP [6].)

In summary, the approach described in this section begins with the de-
velopment of a lattice gas shape grammar based on an understanding of
the physics of the particle dynamics. Diagrams representing the physics
are used to create the actual shape rules that capture the necessary be-
haviors, without regard to finding an appropriate CA neighborhood. Of
note, shape grammars are not restricted by the notion of neighborhood.
The entire production rule set for emulating the physical behavior is
converted to an algebraic topology in the form of binary lists derived
straight from the fluid dynamics shape grammar interpreted in the for-
mat of an appropriately fitting neighborhood matrix. The lists represent
patterns of physical behavior in the form of If–Then conditional state-
ments, which effectively constitute a CA neighborhood. These patterns
are essentially rules with the physics embedded and may be used now
to compute a solution space via the CA encoding.

5. Conclusion

The purpose of this paper has been to show how shape grammars can
be employed with cellular automata (CA) to more easily create a set of
self-generative rules to achieve an intended system behavior. The notion
of neighborhood in the CA framework serves as a conditional control
on the behavior of the generating system. However, a shape grammar
can also exhibit the essence of conditional neighborhood effects in that
when a certain spatial arrangement among shapes is present, the rule
condition can result in a developmental change to the neighborhood.
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Thus, rules of nature or the physical world where context is a critical
factor can be captured by both the shape grammar and CA approaches.

Trying all rule options for each step of development produces diver-
sity in modular designs, which, when reused as nature does, results in a
combinatoric explosion in the system’s design space, a positive outcome
as far as providing creative freedom. Within this very large design space
may occur new properties or components (forms and functions) as a
statistically likely outcome of the combinatorics and which normally
cannot be humanly foreseen. Both shape grammar and CA, however
to the negative, can yield unmanageable design spaces, and to constrain
this result requires properly representing the underlying physics and laws
of nature in the production set itself. This latter step is the basis for
selection of the fittest and constitutes one of the primary responsibilities
of the system architect.

Of importance, this shape grammar to CA (SG�CA) rule develop-
ing process might expand the use of shape grammar as a design input
process with CA as the computational process for many self-generative
systems, such as in biology, physics, and engineering. These tracks of
possible future research may provide better understanding of the form
and function development of system architectures (i.e., complex sys-
tems). Further applications of shape grammar for creating CA rules
in order to satisfy specifications should be pursued to demonstrate the
potential of this methodology as generalizable for diverse applications.
Finally, this SG�CA procedure may permit researchers to more quickly
simulate various conditions using different rules in order to observe
their accuracy in conforming to actual nature, and also through trial
and error replication allow researchers to find the correct physics for
phenomena under investigation.
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