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Cellular Automata (CA)

 - Why are cellular automata interesting?
 - What do we want from the study of CA?
 - Why should an alternative be introduced?



Using Graphs

-Unifying complex networks and complex dynamics
-Well-developed mathematical framework
-More general modeling of complex systems



A dynamic state network (DSN) is defined as a pair (G,R).  
Let the graph G = (V,E) comprise set of vertices V and 
edges E.  Every vi in V contains a state, t.  Let a rule R be 
defined as a mapping from neigborhoods of radius r, Nr, to 
a states tn.  



-Nonuniform neighborhoods
-Redefining rules
-Qualifying and quantifying complexity

Implementation issues



Redefining rules

-Uniform neighborhoods are not guaranteed
-To work around this, let us define the relative total-
istic rule.  Instead of mapping a total to a state, we 
can map the ratio between the total and Nr·tmax to a 
state.



Qualifying and quantifying complexity

-Two types of complexity: structural and behavioral
-Structural complexity deals with the topology of the 
DSN
-Behavioral complexity concerns the temporal evolution 
of the DSN



Entropy as a measure of complexity

-S p log p taken over an arbitrary probability distribution 
produced by counting frequencies of elements
-In a cellular automata, frequencies are taken over neigh-
borhoods
-Generalizing entropy from cellular automata to DSNs is 
not straightforward



Isomorphism entropy

-Direct generalization of CA entropy
-Counting neighborhoods requires equivalence classes for 
graph neighborhoods
-Use isomorphism classes, where two graphs, G and H, 
are isomorphic if there exists a bijection f: V(G) → V(H), 
such that (u,v) is in E(G) iff (f(u),f(v)) is in E(H) and 
Gs(u) = Hs(f(u))



Isomorphism Entropy (cont’d)

-For any non vertex-transitive graph, the minimum isomor-
phism entropy is not necessarily zero
-For some graphs, the maximum isomorphism entropy is 
equal to the minimum entropy
-For graphs with a small diameter, neighborhood sizes 
grow very quickly with radius 
-Isomorphism is not known to be in P.



Arc entropy

-Entropy is taken over all arcs of length q
-An arc is an acyclic, nonempty subgraph of G whose verti-
ces v1..vn are connected by edges {(vi,vi+1)}
-Two arcs are equal if Gs(vi) = Gs(ui) for all i



Arc entropy (cont’d)

-Solves some of the problems with isomorphism entropy
-Loses some of the structural information about a graph in 
reducing a neighborhood to one-dimensional arcs
-Runs in O(n!/(n-q+1)!) in the worst case, a complete 
graph



Vertex duplication Preferential attachment



Grid exponential Ring exponential



Relative “Game of Life” rule

Current state Ratio,p, of alive neighbors Next state
alive 0 <= p < 0.25 dead
alive 0.25 <= p < .5 alive
alive 0.5 <= p <= 1.0 dead
dead 0 <= p < 0.375 dead
dead 0.375 <= p < 0.5 alive
dead 0.5 <= p < 1.0 dead



Comparing the new entropies to the old



Comparing power law graph: arc entropy



Comparing exponential graphs: arc entropy



Isomorphism entropy



Conclusions

-The DSN provides a novel, powerful framework for both 
the empirical and theoretical investigation of complex sys-
tems
-We have introduced entropy measures on the DSN anala-
gous to those on their CA counterparts
-Preliminary results indicate that the topology of the net-
work on which a rule is run materially affects the behavior 
of the DSN.  
-Potential correspondence between particular graph proper-
ties and DSN behavior. 



Future Work

-Expanding framework to include directed, propertied 
edges
-Extensive, if not comprehensive, exploration of the DSN 
rule space
-Concretize the relationship between the behavior of the 
DSN, its topological properties, and the rules placed upon 
it.
-Develop new methods of analysis that take advantage of 
the explicit structure of conditionality in the DSN












