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Simple models – complex behavior

• One-dimensional maps (Ulam, 1950’s)

• von Neumann’s automata

• R. Coifman, GAFA2000 meeting:

... the state of science and technology around
us is reaching a certain level of paralysis, in the
sense, that complex phenomena are handled
with very ad hoc methods, which are invented
on the spot.
... There is no traditional mathematical
formulation, that’s what I’m trying to say.
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ECA and Algebraic Structures

Basic idea (Pedersen 1992, Moore 1997): replace the
conventional CA rule

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

with the equivalent algebraic operation by grouping 2 cells
together

����
??

→ ���
�

���
� → ����

��

⇒ �� ◦�� = ��



ECA and Algebraic Structures

Basic idea (Pedersen 1992, Moore 1997): replace the
conventional CA rule

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

with the equivalent algebraic operation by grouping 2 cells
together

����
?? → ���

�
���
� → ����

�� ⇒ �� ◦�� = ��



ECA and Algebraic Structures

Basic idea (Pedersen 1992, Moore 1997): replace the
conventional CA rule

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

with the equivalent algebraic operation by grouping 2 cells
together

����
?? → ���

�
���
� → ����

�� ⇒ �� ◦�� = ��



Denote e1 = ��, e2 = ��, e3 = ��, e4 = ��.
Products ei ◦ ej , consistent with the corresponding rule define
a multiplication table

◦ e1 e2 e3 e4

e1 e4 e3 e1 e2
e2 e1 e1 e3 e4
e3 e2 e1 e1 e2
e4 e1 e1 e3 e4

or 4-element groupoid – a set of 4 elements together with a
closed binary operation.

ECA rule → groupoid



A Central Problem
ECA evolution can be computed by groupoid multiplications of
neighboring elements:

x1 x2 x3

x1x2 x2x3

(x1x2)(x2x3)

Denote B123 = (x1x2)(x2x3) (◦ symbol is omitted).
Similarly, B1234 = [(x1x2)(x2x3)][(x2x3)(x3x4)], which suggests
a recursion

B12...n = B12...(n−1)B23...n.

In general, n(n − 1)/2 products are required to calculate
B12...n.

Can we do better than O(n2)?
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Can we do better than O(n2)?

Yes (Pedersen, Moore) – if groupoid operation satisfy defining
identities of known algebraic structures

• A semigroup is an associative groupoid, i.e.
x(yz) = (xy)z

• A group is a semigroup with an identity element, and
each element x has an inverse x−1

• Commutative group: in addition xy = yx

• Loops, quasigroups



Example: rule 90

Multiplication table:

◦ e1 e2 e3 e4

e1 e4 e3 e2 e1
e2 e3 e4 e1 e2
e3 e2 e1 e4 e3
e4 e1 e2 e3 e4

• associative

• e4 is an identity element

• an inverse x−1 = x

• commutative

• xp = e4, if p is even,
= x , if p is odd

B123 = (x1x2)(x2x3) = x1x
2
2x3 = x1x3

B1234 = [(x1x2)(x2x3)][(x2x3)(x3x4)] = x1x
3
2x3

3x4 = x1x2x3x4,

B12...n = xp1
1 xp2

2 ...xpn
n , where pk =

(
k−1
n−1

)
, k = 1, 2, ..., n



However, a majority of ECA-groupoids do not belong to any
known algebraic structures!

What kind of identities ECA-groupoids satisfy?w�
Combinatorial search of groupoid identities

• multi-homogeneous identities,
m1(x1, x2, . . . , xk) = m2(x1, x2, . . . , xk),

ex. x1(x2x3) = (x1x2)x3

• identities with B-blocks, B12...k = m(x1, x2, ..., xk),
ex. B122 = x2(x1x2)

• trivial identities m(x1, x2, ..., xk) = ej ,
ex. (x1x2)x1 = e2



Multi-homogeneous Identities Search

m1(x1, x2, ..., xk) = m2(x1, x2, ..., xk),

m1, m2 are monomials of degree d = d1 + d2 + · · ·+ dk ,
or products of xi , each occurs di times, i = 1, . . . , k .

Classify identities by partitions
(d1, d2, . . . , dk), where 1 ≤ d1 ≤ d2 · · · ≤ dk .

Ex. d = 3, partition (1, 2).
variables: x1, x2, x2, and 3 permutations of them,

x1x2x2, x2x1x2, x2x2x1.
2 association types: (x1x2)x2 and x1(x2x2), thus 6 possible
monomials:

(x1x2)x2, x1(x2x2), (x2x1)x2, x2(x1x2), (x2x2)x1, x2(x2x1).

Search: evaluate monomials for all combinations of x1 and x2.

if d = 8, there are more than 17 · 106 monomials!
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Identities: rules 4 and 8

Partition Identities

rule 4
(3) x1x2

1 = x2
1 x1 = e4

(4) x1(x1x2
1 )

(3)
= x1(x2

1 x1), (x1x2
1 )x1

(3)
= (x2

1 x1)x1

(1, 3) B1222 = B2221, x1(x2x2
2 )

(3)
= x1(x2

2 x2), (x2x2
2 )x1

(3)
= (x2

2 x2)x1

(2, 2) B1122 = B2121, B1212 = B2211, x1(x1x2
2 ) = x2(x2x2

1 ),
(x2

1 x2)x2 = (x2
2 x1)x1

(1, 1, 2) B1233
(1,1,1,1)

= B3231

(1, 1, 1, 1) B1234 = B4231

rule 8
(3) x2 = e4, B111 = x1x2

1 = e4

(1, 2) B122 = B212 = B221 = x1x2
2 = x2(x1x2) = e4

(1, 1, 1) B123 = B132 = B213 = B231 = B312 = B321, x1(x2x3) = x2(x1x3)



Rule 30

Partition Identities

(4) B1111 = x1(x1x2
1 ) = x1(x2

1 x1)
(1, 3) B2221 = x2(x2

2 x1), ((x2x1)x2)x2 = (x2
2 x2)x1

(2, 2) ((x1x2)x2)x1 = (x2
1 x2)x2

(1, 1, 2) ((x1x2)x3)x3 = ((x1x3)x3)x2

(5) x1(x1(x1x2
1 ))

(4)
= x1(x1(x2

1 x1)), (x1(x1x2
1 ))x1

(4)
= (x1(x2

1 x1))x1,
(x2

1 x1)x2
1 = ((x1x2

1 )x1)x1, x2
1 (x2

1 x1) = ((x2
1 x1)x1)x1

(1, 4) x1(x2(x2x2
2 ))

(4)
= x1(x2(x2

2 x2)), (x2(x2x2
2 ))x1

(4)
= (x2(x2

2 x2))x1,

x2(((x2x1)x2)x2)
(1,3)
= x2((x2

2 x2)x1), (((x2x1)x2)x2)x2
(1,3)
= ((x2

2 x2)x1)x2,
x2(x1((x2x2

2 )) = x2(x1(x2
2 x2)), x2(x2((x1x2)x2)) = x2(x2(x2(x2x1))),

((x1x2)x2)x2
2 = ((x1x2

2 )x2)x2, ((x2
2 x1)x2)x2 = ((x2

2 x2)x2)x1,
((x2(x1x2))x2)x2 = (x2

2 x2)(x1x2), ((x2(x2x1))x2)x2 = (x2
2 x2)(x2x1)

(2, 3) 18 identities



Rules 20, 54, and 110

Partition Identities

rule 20
(5) x1(x1(x1x2

1 )) = x1((x2
1 x1)x1), x2

1 (x1x2
1 ) = ((x2

1 x1)x1)x1,
(x1(x1x2

1 ))x1 = ((x1x2
1 )x1)x1 = e4

(1, 4) (x1x2)(x2(x2x2)) = (((x1x2)x2)x2)x2, x2((x2(x1x2))x2) = x2((x2(x2x1))x2),
((x2(x2x1))x2)x2 = (x2(x2(x2x1)))x2

(2, 3) B22112 = B22121, (((x2
1 )x2)x2)x2 = (((x1x2)x2)x1)x2

rule 54
(4) B1111 = (x2

1 )2 = e4

(5) (x1(x2
1 x1))x1 = (x2

1 )2x1, x1((x1x2
1 )x1) = x1(x2

1 )2

(2, 3) (x2x2
1 )x2

2 = (x2x2
2 )x2

1 , x2
2 (x2

1 x2) = x2
1 (x2

2 x2)
(1, 2, 2) (x1x2

2 )x2
3 = (x1x2

3 )x2
2 , x2

3 (x2
2 x1) = x2

2 (x2
3 x1)

rule 110
(4) B1111 = (x2

1 )2 = e4

(5) (x1(x2
1 x1))x1 = (x2

1 )2x1, x1(x1(x2
1 x1)) = (x1(x1x2

1 ))x1

(2, 3) (((x1x2)x1)x2)x2 = (((x2x1)x1)x2)x2



Groupoid identities search: summary

• the lowest degree of identities found varies for different
rules: rules 30, 45, 110 are of degree 4, rule 22 – of
degree 6

• common identities: ECA groupoids of rules 30 and 45,
also 54 and 110

• groupoids of class 1 and 2 ECA (rules 0, 8, 16, 24, 36)
exhibit many identities with B-blocks

• groupoids of class 3 and 4 rules, such as 20, 30, 45, 52,
54, 73, 110 satisfy a small number of B-block identities,
however . . .



groupoid of rule 110 satisfies the following identities: of type
(1, 6)

B2212222 = (x1x2)(((x2x
2
2 )x2)x2),

of type (1, 7)

B22122222 = B21222222 = B12222222 = (((x1x2)(x2x
2
2 ))x2)x

2
2 =

(((x1x2)x
2
2 )x2

2 )x2
2 = (x2(((x1x2)x

2
2 )x2))x

2
2 = ((x1x2)x

2
2 )(x2

2 )2 =

x2
2 (((x1x2)x

2
2 )x2

2 ) = x2
2 (x2(((x1x2)x

2
2 )x2)),

of type (1, 8)

B222122222 = (x1x2)(((((x2x
2
2 )x2)x2)x2)x2) = (x2((x1x2)x

2
2 ))(x2

2 )2 =

(x1x2)((x2x
2
2 )2x2) = (x1x2)(((x2((x

2
2x2)x2))x2)x2) =

(x1x2)((x2x
2
2 )(x2(x

2
2x2))) = (x1x2)(((x

2
2x2)x

2
2 )x2

2 ) =

(x1x2)((x2(x
2
2 )2)x2

2 ) = (x1x2)((x
2
2x2)((x2x

2
2 )x2)) =

(x1x2)(x2((x2(x
2
2 )2)x2)) = (x1x2)(x2(((x

2
2x2)x

2
2 )x2)) =

(((x2
2x2)(x2(x1x2)))x2)x

2
2 .



Beyond the empirical search:

Can we “derive” such higher-degree groupoid identities,
starting from some finite set (a basis) of identities?

A basis is a set of identities from which all other groupoid
identities can be derived.

4-element groupoids are not necessarily finitely
based: some “true” identities cannot be derived
from other (lower degree) identities, but can be
“proved” by brute-force substitutions!
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A Brief Review

2-element algebras are finitely based, R. Lyndon (1951).
However, in 1954 Lyndon discovered 7-element groupoid that
is not finitely based.
Murskii (1965) found 3-element groupoid

◦ e1 e2 e3

e1 e1 e1 e1
e2 e1 e1 e2
e3 e1 e3 e3

with the following identity for any n ≥ 3:

x1(x2(x3 . . . (xn−1(xnx1) . . . )) = (x1x2)(xn(xn−1 . . . (x4(x3x2)) . . . )),

that cannot be derived from any set of lower degree identities!



R. McKenzie (1997)

There is no recursive algorithm which when presented with an
effective description of a finite groupoid will determine
whether it is finitely based or not.



Other Structures

• all finite groups are finitely based,
Oates and Powell (1965)

• all commutative semigroups are finitely based,
Perkins (1968)

• However, the following 6-element semigroup(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

where the operation is matrix multiplication, is not
finitely based, Perkins (1968).



6 is the least order of a semigroup without a finite basis for
identities, Trahtman (1983).
Compare:
regardless of the initial condition, a semigroup of at least 6
elements is required to obtain patterns more complicated than
nested, NKS (p.887).
There are 10 ECA-semigroups that exhibit trivial behavior and
are easily predictable.

Summarizing,
• less “structure”, nice algebraic properties of groupoids

implies more interesting ECA patterns, difficult to predict

• an important role of nonassociativity
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Algebraic Cellular Automata (ACA)

• Besides 256 ECA, there might be other 4-element
groupoids (4-groupoids) with interesting behavior – ACA.
There are 416 = 4, 294, 967, 296 possible 4-groupoids, and
only 128 among them are distinct semigroups,
G. Forsythe (1955).

• There are 39 = 19, 683 3-groupoids, with 18
non-equivalent semigroups. Complicated patterns?

• 2-groupoids are finitely based – models of “simplicity”?



2- and 3-groupoids

Enumeration

• Use digits 0, 1, . . . instead of e1, e2 . . . .

• The following 3-element groupoid, for example,

◦ 0 1 2
0 0 1 2
1 1 2 0
2 1 0 2

will be numbered as a decimal 4061, since
121201023 = 406110, and the number in base 3 is formed
by rows of the multiplication table, starting from the top
one.

Elements 2-groupoid: 0 = ��, 1 = ��
3-groupoid: 2 = ��, 1 = ��, 0 = ��



2-groupoids

3 12

9 14



3-groupoid 2611



3-groupoid 3845



3-groupoid 4061



Conclusion

• Correlations between structural algebraic properties
properties, patterns behavior, and predictability of ECA.

• “Symmetries” might not be adequate to explain complex
phenomena.

• An important role of experimental mathematics:
limitations of axiomatic approach.

• Nonassociative structures – what kind of science?



Jacobson’s classical “Basic Algebra I” textbook states:

If we play . . . axiomatic game with the concept of an
associative algebra, we are likely to be led to the
concept of a non-associative algebra, which is
obtained simply by dropping the associative law of
multiplication. If this stage is reached in isolation
from other mathematical realities, it is quite certain
that one would soon abandon the project, since there
is very little of interest that can be said about
non-associative algebras in general.





Tarski’s HSI Problem

a + b = b + a,

a + (b + c) = (a + b) + c ,

a · 1 = a, a · b = b · a,
a · (b · c) = (a · b) · c ,

a · (b + c) = a · b + a · c

1a = 1, a1 = a,

ab+c = ab · ac ,

(a · b)c = ac · bc ,

(ab)c = ab·c

Are there any laws in addition, multiplication add
exponentiation that are true for natural numbers but do not
follow from the familiar HSI?

((1 + a)a + (1 + a + a2)a)b · ((1 + a3)b + (1 + a2 + a4)b)a =

((1 + a)b + (1 + a + a2)b)a · ((1 + a3)a + (1 + a2 + a4)a)b

Wilkie (1981)
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